全文获取类型
收费全文 | 2636篇 |
免费 | 184篇 |
专业分类
2820篇 |
出版年
2021年 | 33篇 |
2020年 | 17篇 |
2019年 | 36篇 |
2018年 | 29篇 |
2017年 | 31篇 |
2016年 | 50篇 |
2015年 | 74篇 |
2014年 | 73篇 |
2013年 | 170篇 |
2012年 | 124篇 |
2011年 | 158篇 |
2010年 | 78篇 |
2009年 | 81篇 |
2008年 | 131篇 |
2007年 | 128篇 |
2006年 | 146篇 |
2005年 | 137篇 |
2004年 | 115篇 |
2003年 | 122篇 |
2002年 | 104篇 |
2001年 | 107篇 |
2000年 | 115篇 |
1999年 | 72篇 |
1998年 | 50篇 |
1997年 | 34篇 |
1996年 | 21篇 |
1995年 | 11篇 |
1994年 | 13篇 |
1993年 | 28篇 |
1992年 | 56篇 |
1991年 | 35篇 |
1990年 | 40篇 |
1989年 | 33篇 |
1988年 | 29篇 |
1987年 | 22篇 |
1986年 | 25篇 |
1985年 | 27篇 |
1984年 | 21篇 |
1983年 | 21篇 |
1982年 | 21篇 |
1981年 | 13篇 |
1980年 | 13篇 |
1979年 | 20篇 |
1978年 | 20篇 |
1977年 | 20篇 |
1974年 | 12篇 |
1971年 | 12篇 |
1970年 | 13篇 |
1969年 | 11篇 |
1968年 | 10篇 |
排序方式: 共有2820条查询结果,搜索用时 39 毫秒
41.
42.
43.
Kohei Murata Masato Sakon Jun-ichi Kambayashi Masaki Okuyama Toshiharu Hase Takesada Mori 《Journal of cellular biochemistry》1995,57(1):120-126
Calyculin A and okadaic acid, potent and cell permeable inhibitors of type 1 and type 2A protein phosphatases, inhibit platelet aggregation and secretion. However, the relationship between phosphatase inhibition and inhibition of platelet function is not well understood. We found that in unstimulated platelets, talin (P235) was phosphorylated at threonine residues by calyculin A. Furthermore, the extent of talin phosphorylation by calyculin A was closely correlated with its inhibition of thrombin-induced platelet aggregation. Since the binding of talin to platelet glycoprotein IIb/IIIa complex has been shown to be affected by its phosphorylation, these results suggest that type 1 and/or type 2A protein phosphatases may play a role in the regulation of membrane-cytoskeleton interaction through dephosphorylation of talin. 相似文献
44.
Keisuke Motone Toshiyuki Takagi Shunsuke Aburaya Wataru Aoki Natsuko Miura Hiroyoshi Minakuchi Haruko Takeyama Yukio Nagasaki Chuya Shinzato Mitsuyoshi Ueda 《Marine biotechnology (New York, N.Y.)》2018,20(4):542-548
Coral reefs are one of the most biologically diverse and economically important ecosystems on earth. However, the destruction of coral reefs has been reported worldwide owing to rising seawater temperature associated with global warming. In this study, we investigated the potential of a redox nanoparticle (RNPO) to scavenge reactive oxygen species (ROS), which are overproduced under heat stress and play a crucial role in causing coral mortality. When reef-building coral (Acropora tenuis) larvae, without algal symbionts, were exposed to thermal stress at 33 °C, RNPO treatment significantly increased the survival rate. Proteome analysis of coral larvae was performed using nano-liquid chromatography-tandem mass spectrometry for the first time. The results revealed that several proteins related to ROS-induced oxidative stress were specifically identified in A. tenuis larvae without RNPO treatment, whereas these proteins were absent in RNPO-treated larvae, which suggested that RNPO effectively scavenged ROS from A. tenuis larvae. Results from this study indicate that RNPO treatment can reduce ROS in aposymbiotic coral larvae and would be a promising approach for protecting corals from thermal stress. 相似文献
45.
Elongation of pollen tubes in pistils after self-pollination of Lilium longiflorum cv. Hinomoto exhibiting strong gametophytic self-incompatibility was promoted by cAMP and also promoted by some metabolic modulators, namely, activators (forskolin and cholera toxin) of adenylate cyclase and inhibitors (3-isobutyl-1-methylxanthine and pertussis) of cyclic nucleotide phosphodiesterase. Moreover, the elongation was promoted by acetylcholine (ACh) and other choline derivatives, such as acetylthiocholine, L-α-phosphatidylcholine and chlorocholinechloride [CCC; (2-chloroethyl) trimethyl ammonium chloride]. A potent inhibitor (neostigmine) of acetylcholinesterase (AChE) as well as acetylcholine also promoted the elongation. cAMP enhanced choline acetyltransferase (ChAT) activity and suppressed AChE activity in the pistils, suggesting that the results are closely correlated with self-incompatibility in L. longiflorum. In short, it came to light that cAMP modulates ChAT (acetylcholine-forming enzyme) and AChE (acetylchoine-decomposing enzyme) activities to enhance the level of ACh in the pistils of L. logiflorum after self-incompatible pollination. These results indicate that the self-incompatibility on self-pollination is caused by low levels of ACh and/or cAMP.Key Words: pollen tubes, self-incompatibility, Lilium longiflorum, cAMP, acetylcholie, AChE, ChATCyclic AMP (cAMP) is an essential signaling molecule in both prokaryotes and eukaryotes.1 The existence of cAMP in higher plants was questioned by some reviewers2–4 in the mid 1970''s, so that many workers were discouraged from studying roles in plant biology. However, its presence was confirmed by mass spectrometry5 and infrared spectrometry6 in the early 1980''s and increasing evidence7–12 now suggests that cAMP makes important contributions in plant cells, as in animals.Lily (Lilium longiflorum) exhibits strong gametophytic self-incompatibility.13,14 Thus, elongation of pollen tubes in the pistil after self-incompatible pollination in L. longiflorum cv. Hinomoto stops halfway, in contrast to the case after cross-compatible pollination (cross with cv. Georgia).14 This self-incompatibility appears to be associated with the stress and self-incompatible pollination on stigmas of lilies results in activation and/or induction of enzymes such as NADH- and NADPH-dependent oxidases, xanthine oxidase, superoxide dismutase (SOD), catalase and ascorbate peroxidase in the pistils.15 The activities of NADH- and NADPH-dependent oxidases (O2−-forming enzymes), however, are known to be suppressed by cAMP16 and increase in the level of cAMP in guinea pig neutrophils results in their decreased expression.17 The level of O2− reactions with SOD is also decreased by cAMP.18 In the case of the lily, inhibition of NADH- and NADPH-dependent oxidases by cAMP was found to be noncompetitive with NAD(P)H.16 We hypothesized that decrease in active oxygen species such as O2− and suppression of stress enzyme activities in self-pollinated pistils of lily by cAMP might cause elongation of pollen tubes after self-pollination and this proved to be the case. Namely, elongation of pollen tubes after self-incompatible pollination in lily was promoted by exogenous cAMP at a concentration as low as 10 nM, a conceivable physiological level.13 Moreover, similar elongation could be achieved with adenylate cyclase activators [forskolin(FK) and cholera toxin] and cAMP phosphodiesterase inhibitors [3-isobutyl-1-methylxanthine (IBMX) and pertussis toxin].14,19 These phenomena led us to examine the involvement of endogenous cAMP in pistils after self-incompatible or cross-compatible pollination. As expected, the level of endogenous cAMP in pistils after self-pollination was approximately one half of that after cross-pollination. Furthermore, this was associated with a concomitant decrease in adenylate cyclase and increase in cAMP phosphodiesterase.19Many researchers in the field of plant biology have been unsuccessful in attempts to estimate the quantity of cAMP and to detect activities of adenylate cyclase and cAMP phosphodiesterase. On major difficulty is the presence of proteases and we have overcome this problem by using protease inhibitors, such as aprotinin and leupeptin.19In 1947, acetylcholine (ACh) of higher plants was first reported in a nettle (Urtica urens) found in the Himalaya mountain range.20 In 1983, its existence in plants was confirmed by mass spectrometry of preparations from Vigna seedlings.21 In our preliminary studies, CCC (chlorocholinechloride), a plant growth retardant (specifically an anti-gibberellin), enhanced the elongation of the pollen tubes in pistils after self-incompatible pollination in lilies. This led us to investigate whether other choline derivatives cause similar effects and positive findings were obtained with ACh, acetylthiocholine and L-α-phosphatidlylcholine.22 Moreover, the elongation was also promoted by neostigmine, an inhibitor of acetylcholine esterase (AChE) activity. In line with these results, choline acetyltransferase (ChAT) demonstrated low and AChE high activity in pistils after self-incompatible pollination.The positive influence of cAMP14,19 and ACh22 in pistils of L. longiflorum after self-incompatible pollination encouraged us to examine the involvement of these two molecules in regulation of pollen tube elongation of lily after self-incompatible and cross-compatible pollination. As a result, it was revealed that cAMP promotes ChAT and suppresses AChE activity in pistils after both self- and cross-pollination. In other words, the self-incompatibilty in pistils of L. longiflorum appears to be due to levels of ACh and/or cAMP below certain threshold values.Hitherto, these substances have not been recognized to play important roles in the metabolic systems of higher plants. However, given their conservation through evolution, it is natural that such central metabolic substances make essential contributions, regardless of the organism. We have succeeded in establishing physiological functions of cAMP and ACh in pistils of lily14,19,22 and this points to use of plant reproductive organs such as research materials. The exact responsibilities of the two molecules may depend on differences in tissues or organs of plants and further molecular biological studies in this area are clearly warranted. This issue is currently being investigated. 相似文献
46.
Hoque MA Banu MN Okuma E Amako K Nakamura Y Shimoishi Y Murata Y 《Journal of plant physiology》2007,164(11):1457-1468
Up-regulation of the antioxidant system provides protection against NaCl-induced oxidative damage in plants. Antioxidants and activity of enzymes involved in the ascorbate-glutathione (ASC-GSH) cycle in tobacco Bright Yellow-2 (BY-2) were investigated to assess the antioxidant protection offered by exogenous proline and glycinebetaine (betaine from now on) against salt stress using cells grown in suspension culture. Reduced ascorbate (ASC) was detected in BY-2 cells but dehydroascorbate (DHA) was not. Large quantities of a reduced form of glutathione (GSH) and smaller quantities of an oxidized form of glutathione (GSSG) were detected in BY-2 cells. Salt stress significantly reduced the contents of ASC and GSH as well as activities of ASC-GSH cycle enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR). Exogenous proline or betaine increased the activities of all enzymes except MDHAR involved in NaCl-induced ASC-GSH cycle. Levels of ASC and GSH in BY-2 cells under salt stress were lower in the presence of proline or betaine than in the absence of proline or betaine whereas there was no difference in redox status. Proline proved more effective than betaine in maintaining the activity of enzymes involved in NaCl-induced ASC-GSH cycle. Neither proline nor betaine had any direct protective effect on NaCl-induced enzyme activity involved in the antioxidant system; however, both improved salt tolerance by increasing enzyme activity. The present study, together with our earlier findings [Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 2006;164:553-61.], suggests that proline offered greater protection against salt stress than betaine did because proline was more effective in increasing the activity of enzymes involved in the antioxidant system. 相似文献
47.
Poikilothermic organisms are exposed to frequent changes in environmental conditions and their survival depends on their ability to acclimate to such changes. Changes in ambient temperature and osmolarity cause fluctuations in the fluidity of cell membranes. Such fluctuations are considered to be critical to the initiation of the regulatory reactions that ultimately lead to acclimation. The mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the analysis of genome-wide gene expression using DNA microarrays has provided a powerful new approach to studies of the contribution of membrane fluidity to gene expression and to the identification of environmental sensors. In this review, we focus on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, and on the subsequent expression of genes that ensures acclimation to a new set of environmental conditions. 相似文献
48.
Tanaka H Tanabe N Suzuki N Shoji M Torigoe H Sugaya A Motohashi M Maeno M 《Life sciences》2005,77(18):2273-2284
Several in vitro and in vivo studies have indicated that tobacco smoking may be an important risk factor for the development and severity of inflammatory periodontal disease. In the present study, we examined the effect of nicotine on cell proliferation, alkaline phosphatase (ALPase) activity, mineralized nodule formation, and the expression of extracellular matrix proteins in the human osteosarcoma cell line Saos-2. The cells were cultured with Dulbecco's modified Eagle medium containing 10% fetal bovine serum with 0, 10(-4) M, and 10(-3) M nicotine for up to 14 days. Mineralized nodule formation was examined by alizarin red staining, and the calcium content in mineralized nodules was determined using a calcium E-test kit. The expression of extracellular matrix proteins was estimated by determining the levels of their mRNAs using the real-time polymerase chain reaction. Mineralized nodule formation and calcium content in mineralized nodules were remarkably suppressed by nicotine on days 10 and 14 of culture, respectively. ALPase activity as well as type I collagen and osteopontin expression also decreased in the presence of nicotine after 5, 10, and 14 days of culture, respectively. By contrast, the amount of bone sialoprotein increased during 14 days of culture with nicotine. These results suggest that nicotine suppresses osteogenesis through a decrease in ALPase and type I collagen production by osteoblasts. 相似文献
49.
Jun Ohwada Sawako Ozawa Masami Kohchi Hiroshi Fukuda Chikako Murasaki Hitomi Suda Takeshi Murata Satoshi Niizuma Masao Tsukazaki Kazutomo Ori Kiyoshi Yoshinari Yoshiko Itezono Mika Endo Masako Ura Hiromi Tanimura Yoko Miyazaki Akira Kawashima Shunsuke Nagao Eitarou Namba Koutarou Ogawa Nobuo Shimma 《Bioorganic & medicinal chemistry letters》2009,19(10):2772-2776
CH0793076 (1) is a novel hexacyclic camptothecin analog showing potent antitumor activity in various human caner xenograft models. To improve the water solubility of 1, water-soluble prodrugs were designed to generate an active drug 1 nonenzymatically, thus expected to show less interpatient PK variability than CPT-11. Among the prodrugs synthesized, 4c (TP300, hydrochloride) having a glycylsarcosyl ester at the C-20 position of 1 is highly water-soluble (>10 mg/ml), stable below pH 4 and rapidly generates 1 at physiological pH in vitro. The rapid (ca. <1 min) generation of 1 after incubation of TP300 with plasma (mouse, rat, dog and monkey) was also demonstrated. TP300 showed a broader antitumor spectrum and more potent antitumor activity than CPT-11 in various human cancer xenograft models. 相似文献
50.
Lathyrus (Leguminosae; Papilionoideae) is the largest genus in tribe Fabeae and exhibits an intriguing extratropical distribution. We studied the systematics and biogeography of Lathyrus using sequence data, from accessions representing 53 species, for the internal transcribed spacer plus 5.8S-coding region of nuclear ribosomal DNA as well as the trnL-F and trnS-G regions of chloroplast DNA. Our results generally supported recent morphology-based classifications, resolving clades corresponding to sections Lathyrus and Lathyrostylis, but question the monophyly of the large, widespread section Orobus sensu Asmussen and Liston. Sections Orobus, Aphaca, and Pratensis form a predominantly northern Eurasian-New World clade. Within this clade, the North American and eastern Eurasian species, including both Holarctic species (L. palustris and L. japonicus), form a transberingian clade of relatively recent origin and diversification. The South American Notolathyrus group is distant from this transberingian lineage and should be reinstated as a distinct section within the northern Eurasian-New World clade. The Notolathyrus lineage reached the New World most probably through long-distance dispersal from Eurasia. The remaining sections in the genus are centered on the Mediterranean region. 相似文献