首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   28篇
  国内免费   2篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   8篇
  2012年   12篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   11篇
  2006年   14篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2001年   10篇
  2000年   12篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   9篇
  1991年   3篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1977年   7篇
  1975年   4篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1952年   1篇
  1950年   1篇
  1942年   2篇
  1924年   1篇
排序方式: 共有271条查询结果,搜索用时 406 毫秒
91.
c-Met must translocate to the nucleus to initiate calcium signals   总被引:3,自引:0,他引:3  
Hepatocyte growth factor (HGF) is important for cell proliferation, differentiation, and related activities. HGF acts through its receptor c-Met, which activates downstream signaling pathways. HGF binds to c-Met at the plasma membrane, where it is generally believed that c-Met signaling is initiated. Here we report that c-Met rapidly translocates to the nucleus upon stimulation with HGF. Ca(2+) signals that are induced by HGF result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. Translocation of c-Met to the nucleus depends upon the adaptor protein Gab1 and importin beta1, and formation of Ca(2+) signals in turn depends upon this translocation. HGF may exert its particular effects on cells because it bypasses signaling pathways in the cytoplasm to directly activate signaling pathways in the nucleus.  相似文献   
92.
BACKGROUND: Uptake of genetic testing remains low, even in families with known BRCA1 and BRCA2 (BRCA1/2) mutations, despite effective interventions to reduce risk. We report disclosure and uptake patterns by BRCA1/2-positive individuals to at-risk relatives, in the setting of no-cost genetic counseling and testing. METHODS: Relatives of BRCA1/2-positive individuals were offered cost-free and confidential genetic counseling and testing. If positive for a BRCA1/2 mutation, participants were eligible to complete a survey about their disclosure of mutation status and the subsequent uptake of genetic testing by at-risk family members. RESULTS: One hundred and fifteen of 142 eligible individuals responded to the survey (81%). Eighty-eight (77%) of those surveyed disclosed results to all at-risk relatives. Disclosure to first-degree relatives (FDRs) was higher than to second-degree relatives (SDRs) and third-degree relatives (TDR) (95% vs. 78%; p < 0.01). Disclosure rates to male versus female relatives were similar, but reported completion of genetic testing was higher among female versus male FDRs (73% vs. 49%; p < 0.01) and SDRs (68% vs. 43%; p < 0.01), and among members of maternal versus paternal lineages (63% vs. 0%; p < 0.01). Men were more likely than women to express general difficulty discussing positive BCRA1/2 results with at-risk family members (90% vs. 70%; p = 0.03), while women reported more emotional distress associated with disclosure than men (48% vs. 13%; p < 0.01). DISCUSSION: We report a very high rate of disclosure of genetic testing information to at-risk relatives. However, uptake of genetic testing among at-risk individuals was low despite cost-free testing services, particularly in men, SDRs, and members of paternal lineages. The complete lack of testing among paternally related at-risk individuals and the lower testing uptake among men signify a significant barrier to testing and a challenge for genetic counselors and physicians working with high-risk groups. Further research is necessary to ensure that family members understand their risk and the potential benefits of genetic counseling.  相似文献   
93.

Background

The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB) genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C), along with the genomes of laboratory strains (H37Rv and H37Ra), provides new insights on the mechanisms of adaptation of this bacterium to the human host.

Findings

The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms.

Conclusion

The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.  相似文献   
94.
The pathogenesis of the California serogroup bunyaviruses includes both extraneural and intraneural replicative phases that can be separated experimentally. The present study dissects the viral genetic determinants of extraneural replication. We have previously described two attenuated reassortant clones of California serogroup bunyaviruses which exhibit reduced neuroinvasiveness after subcutaneous inoculation into suckling mice. Clone B1-1a bears an attenuated middle RNA segment (neuroinvasiveness phenotype v alpha v), and clone B.5 bears an attenuated large RNA segment (neuroinvasiveness phenotype alpha vv). We prepared reassortant viruses between these two strains and found that the two attenuated gene segments acted independently and additively, since reassortants bearing two attenuated RNA segments were more attenuated than the parental clones. Reassortants bearing no attenuated RNA segments were much more neuroinvasive than either parental clone, indicating that a neuroinvasive strain can be derived from two attenuated clones. Pathogenesis studies demonstrated that after injection of 10(3) PFU, the attenuated reassortant clones did not replicate in peripheral tissue, failed to reach the brain, and did not cause disease. At a dose of 10(6) PFU, attenuated clones failed to replicate to a significant level in peripheral tissue and produced only a minimal passive plasma viremia during the first 24 h but nevertheless reached high titers in the brain and killed mice. Because of this result, we investigated the possibility that neuroinvasion occurs via retrograde axonal transport, by determining whether sciatic nerve sectioning could protect against virus infection after hind leg footpad inoculation. We found that nerve sectioning had no effect on lethality, ruling out this mode of entry and suggesting that passive viremia is likely to be sufficient for invasion of the central nervous system.  相似文献   
95.
We have isolated a cDNA encoding a novel hematopoietin receptor family member related to the p40 subunit of interleukin-12 and to the ciliary neurotrophic factor receptor, whose expression is induced in B lymphocytes by Epstein-Barr virus (EBV) infection. This gene, which we have designated EBV-induced gene 3 (EBI3), encodes a 34-kDa glycoprotein which lacks a membrane-anchoring motif and is secreted. Despite the absence of a membrane-anchoring motif and of cysteines likely to mediate covalent linkage to an integral membrane protein, EBI3 is also present on the plasma membrane of EBV-transformed B lymphocytes and of transfected cells. Most newly synthesized EBI3 is retained in the endoplasmic reticulum in an endoglycosidase H-sensitive form associated with the molecular chaperone calnexin and with a novel 60-kDa protein. EBI3 is expressed in vivo by scattered cells in interfollicular zones of tonsil tissue, by cells associated with sinusoids in perifollicular areas of spleen tissue, and at very high levels by placental syncytiotrophoblasts. EBI3 expression in vitro is induced in EBV-negative cell lines by expression of the EBV latent infection membrane protein-1 and in peripheral blood mononuclear cells by pokeweed mitogen stimulation. EBI3 maps to chromosome 19p13.2/3, near genes encoding the erythropoietin receptor and the cytokine receptor-associated kinase, Tyk2. EBI3 synthesis by trophoblasts and by EBV-transformed cells and similarities to interleukin-12 p40 are compatible with a role for EBI3 in regulating cell-mediated immune responses.  相似文献   
96.
The binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured cardiac cells has been compared with the binding observed in homogenized membrane preparations. The antagonists [3H]quinuclidinyl benzilate and [3H]N-methylscopolamine bind to a single class of receptor sites on intact cells with affinities similar to those seen in membrane preparations. In contrast with the heterogeneity of agonist binding sites observed in membrane preparations, the agonist carbachol binds to a homogeneous class of low-affinity sites on intact cells with an affinity identical to that found for the low-affinity agonist site in membrane preparations in the presence of guanyl nucleotides. Kinetic studies of antagonist binding to receptors in the absence and presence of agonist did not provide evidence for the existence of a transient (greater than 30 s) high-affinity agonist site that was subsequently converted to a site of lower affinity. Nathanson N. M. Binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured heart cells.  相似文献   
97.
Previous studies have demonstrated that embryonic skeletal muscle is competent to form hyaline cartilage when cultured in vitro on demineralized bone matrix (Nogami, H., and Urist, M. R. (1970). Exp. Cell Res.63, 404–410; Nathanson, M. A., et al. (1978). Develop. Biol.64, 99–117). The present experiments were undertaken to determine the nature of the morphological alterations which attend this phenotypic transformation and to investigate the ultrastructural characteristics of the myoblasts and fibroblasts of skeletal muscle during the transformation. Nineteen-day embryonic rat limb muscles were minced and the tissue fragments explanted to bone matrix or collagen gels. The trauma of excision and mincing causes syncytial myotubes to degenerate and the nuclei of mononucleate cells to enter a heterochromatic “resting stage.” In culture, nuclei of mononucleate cells rapidly regain euchromasia. No myoblast or fibroblast cell death can be detected. On bone matrix, the entire mononucleate population transforms into fibroblast-like cells. Myoblasts are the major contributor to this population; they dissociate from the degenerate myotubes and begin to acquire endoplasmic reticulum by 24 h in vitro. The fibroblast-like morphology persists through 4 days in vitro. By 6 days in vitro some of these fibroblast-like cells acquire the phenotypic characteristics of chondrocytes, and by 10 days masses of hyaline cartilage are found. In control explants of skeletal muscle onto collagen gels, the heterochromatic nuclei of the mononucleated cells expand after 24 hr in vitro, but the mononucleated cells remain as myoblasts and fibroblasts and begin to regenerate skeletal muscle by 4 days in vitro. No cartilage forms. The results indicate that both myoblasts and fibroblasts have chondrogenic potential when grown on demineralized bone. It is tempting to conclude that the embryonic mesenchymal cells which give rise to skeletal muscle, cartilage, and other connective tissue of the limb have similar developmental potentials and that local influences, rather than separate cell lineages, account for the final pattern of differentiation.  相似文献   
98.
Total PKC activity in BAEC incubated for 24 hrs in either 10% serum (FBS) or serum-deprived media (SDM) was similar. However, most of the activity (69%) in the FBS group was detected in the particulate fraction, while it was mainly in the cytosolic fraction (66%) in the SDM group. By confocal microscopy, there was diffuse cytoplasmic localization of the antibodies to the alpha and beta PKC isoforms. gamma PKC was not detected. Treatment of FBS or SDM cells with a phorbol ester resulted in an increase in PKC activity with translocation to the particulate fraction. PKC alpha immunofluorescence redistributed to the perinuclear region whereas PKC beta staining remained mostly cytosolic. Calphostin C, a PKC inhibitor, prevented the phorbol ester-induced increase in PKC activity and translocation.  相似文献   
99.
The cardiac m2 muscarinic acetylcholine receptor (mAChR) is a sialoglycosylated transmembrane protein which has three potential sites for N-glycosylation (namely, Asn2, Asn3, and Asn6). To investigate the role of N-linked oligosaccharide(s) in the expression and function of the receptor, we constructed glycosylation-defective mutant receptor genes in which the three asparagine codons were substituted by codons for either aspartate (Asp2,3,6), lysine (Lys2,3,6), or glutamine (Gln2,3,6). The glycosylation-defective and wild-type receptor genes were stably expressed in Chinese hamster ovary cells. Binding experiments with the membrane-permeable radioligand [3H]quinuclidinyl-benzilate and the membrane-impermeable radioligand [3H]N-methylscopolamine revealed that the Asp2,3,6, Gln2,3,6, and wild-type receptors were located exclusively on the cell surface and expressed in similar numbers. The Lys2,3,6 mutant receptor was expressed at a relatively low level and was therefore not included in subsequent experiments. Wheat germ agglutinin-Sepharose chromatography and sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis demonstrated that the wild-type receptor, but not the Asp2,3,6 and Gln2,3,6 mutant receptors were N-glycosylated. The Asp2,3,6 and Gln2,3,6 mutant receptors had the same affinities for mAChR ligands as wild-type receptors. The time courses for degradation of the Asp2,3,6, Gln2,3,6, and wild-type receptors were also similar. In vivo functional analysis of the ability of the glycosylation mutant receptors to inhibit forskolin-stimulated cAMP accumulation revealed that maximal inhibition of adenylate cyclase activity was similar in the mutant and wild-type receptors. The Asp2,3,6 mutant receptor had an unaltered IC50 value for carbachol while the IC50 value of the Gln2,3,6 mutant receptor was 2-fold higher than that of the wild-type receptor. These results indicate that N-glycosylation of the m2 mAChR is not required for cell surface localization or ligand binding and does not confer increased stability against receptor degradation. Furthermore, N-glycosylation of the m2 mAChR is not required for functional coupling of the m2 mAChR to inhibition of adenylate cyclase.  相似文献   
100.
A large number of high-level and low-level constitutive mutations in the araC gene of Escherichia coli were shown by deletion mapping to lie almost exclusively in two regions of the araC gene. Recombination data show that the high-level constitutive mutations are located within two very small regions, each probably less than ten base-pairs, while the low-level constitutive mutations are spread over two broader areas, each centered at the same two regions. All constitutive mutations isolated in either the presence or absence of d-fucose, an analog of l-arabinose which antagonizes induction by arabinose, are altered from the wild type in their response to this analog. A nonsense mutation that maps in one of the constitutive regions can be suppressed to wild type, “low-level” constitutive, or “high-level” constitutive phenotypes, depending on the amino acid inserted at the site of the mutation. This demonstrates that changing a single amino acid can cause dramatic alterations in the regulatory properties of the araC activator protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号