首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   71篇
  1030篇
  2024年   2篇
  2023年   7篇
  2022年   19篇
  2021年   34篇
  2020年   18篇
  2019年   18篇
  2018年   33篇
  2017年   17篇
  2016年   44篇
  2015年   63篇
  2014年   73篇
  2013年   64篇
  2012年   87篇
  2011年   89篇
  2010年   52篇
  2009年   43篇
  2008年   49篇
  2007年   48篇
  2006年   46篇
  2005年   40篇
  2004年   42篇
  2003年   31篇
  2002年   37篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1991年   2篇
  1989年   3篇
  1985年   4篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
  1966年   3篇
  1964年   1篇
  1961年   1篇
  1942年   1篇
  1939年   1篇
  1927年   1篇
  1923年   1篇
  1919年   1篇
排序方式: 共有1030条查询结果,搜索用时 0 毫秒
91.
We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10(-19)), near AHR, and 15q24 (P = 5.2 × 10(-14)), between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.  相似文献   
92.
Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states.  相似文献   
93.
Global patterns of leaf mechanical properties   总被引:1,自引:0,他引:1  
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.  相似文献   
94.

Background

Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD) gene affects lead toxicokinetics and may modify the adverse effects of lead.

Methods

The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs) tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC). Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using logistic regression.

Results

The adjusted risk associated with the ALAD variant rs8177796CT/TT was increased (OR = 1.35, 95%CI = 1.05–1.73, p-value = 0.02) when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles (GGOR = 2.68, 95%CI = 1.17–6.12, p = 0.01; GAOR = 1.79, 95%CI = 1.06–3.04 with an interaction approaching significance (pint = 0.06).. No significant modification in RCC risk was observed for the functional variant rs1800435(K68N). Haplotype analysis identified a region associated with risk supporting tagging SNP results.

Conclusion

A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure.  相似文献   
95.

Background

Acid-sensing ion channels (ASICs) have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG) neurons obtained from Wistar rats.

Results

Behavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase), and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ < 400 ms) ASIC currents in DRG neurons obtained from Wistar rats, with a nonsignificant action on ASIC currents with a slow desensitizing time-course. The action of thalassiolin B shows no pH or voltage dependence nor is it modified by steady-state ASIC desensitization or voltage. The high concentration of thalassiolin B in the extract may account for the antinociceptive action of BM-21.

Conclusions

To our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic application.  相似文献   
96.
Murine cells do not support efficient assembly and release of human immunodeficiency virus type 1 (HIV-1) virions. HIV-1-infected mouse cells that express transfected human cyclin T1 synthesize abundant Gag precursor polyprotein, but inefficiently assemble and release virions. This assembly defect may result from a failure of the Gag polyprotein precursor to target to the cell membrane. Plasma membrane targeting of the precursor is mediated by the amino-terminal region of polyprotein. To compensate for the assembly block, we substituted the murine leukemia virus matrix coding sequences into an infectious HIV-1 clone. Transfection of murine fibroblasts expressing cyclin T1 with the chimeric proviruses resulted in viruses that were efficiently assembled and released. Chimeric viruses, in which the cytoplasmic tail of the transmembrane subunit, gp41, was truncated to prevent potential interference between the envelope glycoprotein and the heterologous matrix, could infect human and murine cells. They failed to further replicate in the murine cells, but replicated with delayed kinetics in human MT-4 cells. These findings may be useful for establishing a murine model for HIV-1 replication.  相似文献   
97.
98.
99.
100.
Protein degradation in muscle functions in maintaining normal physiological homeostasis and adapting to new homeostatic states, and is required for muscle wasting or atrophy in various pathological states. The interplay between protein synthesis and degradation to maintain homeostasis is complex and responds to a variety of autocrine and intercellular signals from neuronal inputs, hormones, cytokines, growth factors and other regulatory molecules. The intracellular events that connect extracellular signals to the molecular control of protein degradation are incompletely understood, but likely involve interacting signal-transduction networks rather than isolated pathways. We review some examples of signal-transduction systems that regulate protein degradation, including effectors of proteolysis inducing factor (PIF), insulin and insulin-like growth factor (IGF) and their receptors, and fibroblast growth factor (FGF) and its receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号