首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   8篇
  149篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   10篇
  2014年   9篇
  2013年   7篇
  2012年   17篇
  2011年   18篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   2篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有149条查询结果,搜索用时 0 毫秒
141.
Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.  相似文献   
142.
143.
The viral mitochondria-localized inhibitor of apoptosis (vMIA), encoded by the UL37 gene of human cytomegalovirus, inhibits apoptosis-associated mitochondrial membrane permeabilization by a mechanism different from that of Bcl-2. Here we show that vMIA induces several changes in Bax that resemble those found in apoptotic cells yet take place in unstimulated, non-apoptotic vMIA-expressing cells. These changes include the constitutive localization of Bax at mitochondria, where it associates tightly with the mitochondrial membrane, forming high molecular weight aggregates that contain vMIA. vMIA recruits Bax to mitochondria but delays relocation of caspase-8-activated truncated Bid-green fluorescent protein (GFP) (t-Bid-GFP) to mitochondria. The ability of vMIA and its deletion mutants to associate with Bax and to induce relocation of Bax to mitochondria correlates with their anti-apoptotic activity and with their ability to suppress mitochondrial membrane permeabilization. Taken together, our data indicate that vMIA blocks apoptosis via its interaction with Bax. vMIA neutralizes Bax by recruiting it to mitochondria and "freezing" its pro-apoptotic activity. These data unravel a novel strategy of subverting an intrinsic pathway of apoptotic signaling.  相似文献   
144.
145.
An intensive recent effort to develop ATP-competitive mTOR inhibitors has resulted in several potent and selective molecules such as Torin1, PP242, KU63794, and WYE354. These inhibitors are being widely used as pharmacological probes of mTOR-dependent biology. To determine the potency and specificity of these agents, we have undertaken a systematic kinome-wide effort to profile their selectivity and potency using chemical proteomics and assays for enzymatic activity, protein binding, and disruption of cellular signaling. Enzymatic and cellular assays revealed that all four compounds are potent inhibitors of mTORC1 and mTORC2, with Torin1 exhibiting ~20-fold greater potency for inhibition of Thr-389 phosphorylation on S6 kinases (EC(50) = 2 nM) relative to other inhibitors. In vitro biochemical profiling at 10 μM revealed binding of PP242 to numerous kinases, although WYE354 and KU63794 bound only to p38 kinases and PI3K isoforms and Torin1 to ataxia telangiectasia mutated, ATM and Rad3-related protein, and DNA-PK. Analysis of these protein targets in cellular assays did not reveal any off-target activities for Torin1, WYE354, and KU63794 at concentrations below 1 μM but did show that PP242 efficiently inhibited the RET receptor (EC(50), 42 nM) and JAK1/2/3 kinases (EC(50), 780 nM). In addition, Torin1 displayed unusually slow kinetics for inhibition of the mTORC1/2 complex, a property likely to contribute to the pharmacology of this inhibitor. Our results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 μM and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.  相似文献   
146.
147.
Analysis of high-density superresolution imaging of receptors reveals the organization of dendrites at nanoscale resolution. We present here an apparently novel method that uses local statistics extracted from short-range trajectories for the simulations of long-range trajectories in empirical live cell images. Based on these empirical simulations, we compute the residence time of a receptor in dendritic spines that accounts for receptors’ local interactions and geometrical membrane organization. We report here that depending on the type of the spine, the residence time varies from 1 to 5 min. Moreover, we show that there exists transient organized structures, previously described as potential wells that can regulate the trafficking of receptors to dendritic spine: the simulation results suggest that receptor trafficking is regulated by transient structures.  相似文献   
148.

Background

K-RAS mutation poses a particularly difficult problem for cancer therapy. Activating mutations in K-RAS are common in cancers of the lung, pancreas, and colon and are associated with poor response to therapy. As such, targeted therapies that abrogate K-RAS-induced oncogenicity would be of tremendous value.

Methods

We searched for small molecule kinase inhibitors that preferentially affect the growth of colorectal cancer cells expressing mutant K-RAS. The mechanism of action of one inhibitor was explored using chemical and genetic approaches.

Results

We identified BAY61-3606 as an inhibitor of proliferation in colorectal cancer cells expressing mutant forms of K-RAS, but not in isogenic cells expressing wild-type K-RAS. In addition to its anti-proliferative effects in mutant cells, BAY61-3606 exhibited a distinct biological property in wild-type cells in that it conferred sensitivity to inhibition of RAF. In this context, BAY61-3606 acted by inhibiting MAP4K2 (GCK), which normally activates NFκβ signaling in wild-type cells in response to inhibition of RAF. As a result of MAP4K2 inhibition, wild-type cells became sensitive to AZ-628, a RAF inhibitor, when also treated with BAY61-3606.

Conclusions

These studies indicate that BAY61-3606 exerts distinct biological activities in different genetic contexts.  相似文献   
149.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号