首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8000篇
  免费   846篇
  国内免费   5篇
  2023年   53篇
  2022年   92篇
  2021年   208篇
  2020年   144篇
  2019年   150篇
  2018年   177篇
  2017年   167篇
  2016年   233篇
  2015年   397篇
  2014年   398篇
  2013年   444篇
  2012年   604篇
  2011年   583篇
  2010年   320篇
  2009年   301篇
  2008年   443篇
  2007年   397篇
  2006年   383篇
  2005年   341篇
  2004年   316篇
  2003年   275篇
  2002年   215篇
  2001年   117篇
  2000年   140篇
  1999年   112篇
  1998年   60篇
  1997年   56篇
  1996年   53篇
  1995年   49篇
  1994年   45篇
  1993年   54篇
  1992年   91篇
  1991年   80篇
  1990年   84篇
  1989年   79篇
  1988年   69篇
  1987年   62篇
  1986年   50篇
  1985年   69篇
  1984年   51篇
  1983年   50篇
  1982年   42篇
  1981年   51篇
  1980年   47篇
  1979年   54篇
  1978年   51篇
  1977年   50篇
  1975年   48篇
  1974年   44篇
  1972年   33篇
排序方式: 共有8851条查询结果,搜索用时 15 毫秒
991.
Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays.  相似文献   
992.
Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson–Crick terminal base pairs (GC, AU and UA) with all 16 possible 3′ double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3′ dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3′ double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for 3′ single terminal overhangs adjacent to a UA pair are also presented.  相似文献   
993.
994.
Macrophage aggregates (MAs) occur in various organs of fishes, especially the kidney, liver and spleen, and contain melanin, ceroid/lipofuscin and hemosiderin pigments. They have been used as indicators of a number of natural and anthropogenic stressors. Macrophage aggregates occur in salmonids but are poorly organized, irregularly shaped, and are generally smaller than those in derived teleosts. These features complicate quantification, and thus these fishes have seldom been used in studies correlating MAs with environmental stressors. To alleviate these complications, we developed color filtering algorithms for use with the software package ImagePro Plus (Media Cybernetics) that select and quantify pigmented area (i.e. colors ranging from gold to brown to black) in tissue sections. Image analysis results compared well with subjective scoring when tested on brook trout Salvelinus fontinalis and rainbow trout Oncorhynchus mykiss captured from high-elevation lakes or hatcheries. Macrophage aggregate pigments correlated positively with age and negatively with condition factor. Within individual fish, pigmentation correlated positively among organs, suggesting that the kidney, liver or spleen are suitable indicator organs. In age-matched fishes, MA pigments were not different between hatcheries and lakes in the organs examined. Between lakes, differences in pigments were observed in the kidney and spleen, but were not explained by age, condition factor, sex or maturation state. Our results indicate that quantification of the area occupied by MA pigments is an efficient and accurate means of evaluating MAs in salmonid organs and that organ pigmentation correlates with age and condition factor, as seen in studies with more derived fishes.  相似文献   
995.
The Saccharomyces cerevisiae vacuolar proton-translocating ATPase (V-ATPase) is composed of 14 subunits distributed between a peripheral V1 subcomplex and an integral membrane V0 subcomplex. Genome-wide screens have led to the identification of the newest yeast V-ATPase subunit, Vma9p. Vma9p (subunit e) is a small hydrophobic protein that is conserved from fungi to animals. We demonstrate that disruption of yeast VMA9 results in the failure of V1 and V0 V-ATPase subunits to assemble onto the vacuole and in decreased levels of the subunit a isoforms Vph1p and Stv1p. We also show that Vma9p is an integral membrane protein, synthesized and inserted into the endoplasmic reticulum (ER), which then localizes to the limiting membrane of the vacuole. All V0 subunits and V-ATPase assembly factors are required for Vma9p to efficiently exit the ER. In the ER, Vma9p and the V0 subunits interact with the V-ATPase assembly factor Vma21p. Interestingly, the association of Vma9p with the V0-Vma21p assembly complex is disrupted with the loss of any single V0 subunit. Similarly, Vma9p is required for V0 subunits Vph1p and Vma6p to associate with the V0-Vma21p complex. In contrast, the proteolipids associate with Vma21p even in the absence of Vma9p. These results demonstrate that Vma9p is an integral membrane subunit of the yeast V-ATPase V0 subcomplex and suggest a model for the arrangement of polypeptides within the V0 subcomplex.  相似文献   
996.
A critical role for calponin 2 in vascular development   总被引:3,自引:0,他引:3  
Calponin 2 (h2 calponin, CNN2) is an actin-binding protein implicated in cytoskeletal organization. We have found that the expression of calponin 2 is relatively restricted to vasculature from 16 to 30 h post-fertilization during zebrafish (Danio rerio) development. Forty-eight hours after injecting antisense morpholino oligos against calponin 2 into embryos at the 1-4-cell stage, zebrafish demonstrated various cardiovascular defects, including sluggish axial and head circulation, absence of circulation in intersegmental vessels and in the dorsal longitudinal anastomotic vessel, enlarged cerebral ventricles, and pericardial edema, in addition to an excess bending, spiraling tail and twisting of the caudal fin. Knockdown of calponin 2 in the Tg(fli1:EGFP)(y1) zebrafish line (in which a fli1 promoter drives vascular-specific enhanced green fluorescent protein expression) indicated that diminished calponin 2 expression blocked the proper migration of endothelial cells during formation of intersegmental vessels. In vitro studies showed that basic fibroblast growth factor-induced human umbilical vein endothelial cell migration was down-regulated by knockdown of calponin 2 expression using an antisense adenovirus, and overexpression of calponin 2 enhanced migration and hastened wound healing. These events were correlated with activation of mitogen-activated protein kinase; moreover, inhibition of this pathway blocked the promigratory effect of calponin 2. Collectively, these data suggest that calponin 2 plays an important role in the migration of endothelial cells both in vivo and in vitro and that its expression is critical for proper vascular development.  相似文献   
997.
Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes   总被引:1,自引:0,他引:1  
Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 microM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to approximately 55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 microM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6beta-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 microM fipronil followed by dramatically declining activity measurements at 10 and 25 microM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 microM fipronil followed by decreasing activities at 25 and 50 microM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 microM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.  相似文献   
998.
mFruits are second-generation monomeric red fluorescent proteins (mRFPs) that have improved brightness and photostability compared to the first-generation mRFP1. The emission and excitation maxima are distributed over the remarkably large ranges of about 550-650 and 540-590 nm, respectively; however, the variations in the spectra can be traced to a few key amino acids. Spectroscopic and atomic resolution crystallographic analyses of three representatives, mOrange, mStrawberry, and mCherry, reveal that different mechanisms operate to establish the excitation and emission maxima. Evidently, they all undergo the second oxidation step to produce an acylimine linkage in the polypeptide backbone. In comparison to the progenitor DsRed, direct covalent modification to this linkage (mOrange) and indirect modification of the chromophore environment (mStrawberry and mCherry) produce strong blue- and red-shifted variants. The blue shift of mOrange is induced by an unprecedented covalent modification of the protein backbone. The electron-density map indicates the formation of a third heterocycle, 2-hydroxy-dihydrooxazole, upon the reaction of Thr 66 Ogamma with the polypeptide backbone, which in turn reduces the conjugation of the carbonyl at position 65 with the rest of the chromophore. In mStrawberry and mCherry, the movement of charged Lys 70 and protonation of Glu 215 are proposed to modify the chromophore electron-density distribution, inducing the red shift. pH-dependent spectral shifts of mCherry and mStrawberry appear to result from the titration of Glu 215, although, for mStrawberry, partial cyclization of Thr 66 may contribute at high pH.  相似文献   
999.
1000.
The NRAMP family of metal-ion transporters   总被引:5,自引:0,他引:5  
The family of NRAMP metal ion transporters functions in diverse organisms from bacteria to human. NRAMP1 functions in metal transport across the phagosomal membrane of macrophages, and defective NRAMP1 causes sensitivity to several intracellular pathogens. DCT1 (NRAMP2) transport metal ions at the plasma membrane of cells of both the duodenum and in peripheral tissues, and defective DCT1 cause anemia. The driving force for the metal-ion transport is proton gradient (protonmotive force). In DCT1 the stoichiometry between metal ion and proton varied at different conditions due to a mechanistic proton slip. Though the metal ion transport by Smf1p, the yeast homolog of DCT1, is also a protonmotive force, a slippage of sodium ions was observed. The mechanism of the above phenomena could be explained by a combination between transporter and channel mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号