全文获取类型
收费全文 | 5690篇 |
免费 | 491篇 |
国内免费 | 4篇 |
专业分类
6185篇 |
出版年
2023年 | 53篇 |
2022年 | 108篇 |
2021年 | 201篇 |
2020年 | 133篇 |
2019年 | 127篇 |
2018年 | 155篇 |
2017年 | 143篇 |
2016年 | 209篇 |
2015年 | 342篇 |
2014年 | 354篇 |
2013年 | 354篇 |
2012年 | 535篇 |
2011年 | 515篇 |
2010年 | 279篇 |
2009年 | 252篇 |
2008年 | 338篇 |
2007年 | 317篇 |
2006年 | 278篇 |
2005年 | 246篇 |
2004年 | 216篇 |
2003年 | 180篇 |
2002年 | 147篇 |
2001年 | 44篇 |
2000年 | 26篇 |
1999年 | 30篇 |
1998年 | 37篇 |
1997年 | 27篇 |
1996年 | 30篇 |
1995年 | 23篇 |
1994年 | 21篇 |
1993年 | 24篇 |
1992年 | 34篇 |
1991年 | 19篇 |
1990年 | 17篇 |
1989年 | 21篇 |
1988年 | 18篇 |
1987年 | 18篇 |
1986年 | 14篇 |
1985年 | 19篇 |
1984年 | 11篇 |
1983年 | 12篇 |
1982年 | 15篇 |
1981年 | 20篇 |
1980年 | 14篇 |
1979年 | 21篇 |
1978年 | 10篇 |
1977年 | 15篇 |
1976年 | 17篇 |
1975年 | 16篇 |
1974年 | 13篇 |
排序方式: 共有6185条查询结果,搜索用时 15 毫秒
71.
The translocated intimin receptor (TIR) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) is required for EPEC and EHEC infections, which cause widespread illness across the globe. TIR is translocated via a type-III secretion system into the intestinal epithelial cell membrane, where it serves as an anchor for E. coli attachment via its binding partner intimin. While many aspects of EPEC and EHEC infection are now well understood, the importance of the intermolecular contacts made between intimin and TIR have not been thoroughly investigated. Herein we report site-directed mutagenesis studies on the intimin-binding domain of EPEC TIR, and how these mutations affect TIR-intimin association, as analyzed by isothermal titration calorimetry and circular dichroism. These results show how two factors govern TIR's binding to intimin: A three-residue TIR hot spot is identified that largely mediates the interaction, and mutants that alter the beta-hairpin structure of TIR severely diminish binding affinity. In addition, peptides incorporating key TIR residues identified by mutagenesis are incapable of binding intimin. These results indicate that hot spot residues and structural orientation/preorganization are required for EPEC, and likely EHEC, TIR-intimin binding. 相似文献
72.
Srinivas S Rodriguez T Clements M Smith JC Beddington RS 《Development (Cambridge, England)》2004,131(5):1157-1164
The anterior visceral endoderm (AVE) of the mouse embryo is a specialised extra-embryonic tissue that is essential for anterior patterning of the embryo. It is characterised by the expression of anterior markers such as Hex, Cerberus-like and Lhx1. At pre-gastrula stages, cells of the AVE are initially located at the distal tip of the embryo, but they then move unilaterally to the future anterior. This movement is essential for converting the existing proximodistal axis into an anteroposterior axis. To investigate this process, we developed a culture system capable of imaging embryos in real time with single cell resolution. Our results show that AVE cells continuously change shape and project filopodial processes in their direction of motion, suggesting that they are actively migrating. Their proximal movement stops abruptly at the junction of the epiblast and extra-embryonic ectoderm, whereupon they move laterally. Confocal microscope images show that AVE cells migrate as a single layer in direct contact with the epiblast, suggesting that this tissue might provide directional cues. Together, these results show that the anteroposterior axis is correctly positioned by the active movement of cells of the AVE in response to cues from their environment, and by a 'barrier' to their movement that provides an endpoint for this migration. 相似文献
73.
Exploring the recognition of quadruplex DNA by an engineered Cys2-His2 zinc finger protein 总被引:3,自引:0,他引:3
Ladame S Schouten JA Roldan J Redman JE Neidle S Balasubramanian S 《Biochemistry》2006,45(5):1393-1399
We have recently described an engineered zinc finger protein (Gq1) that binds with high specificity to the intramolecular G-quadruplex formed by the human telomeric sequence 5'-(GGTTAG)(5)-3', and that inhibits the activity of the enzyme telomerase in vitro. Here we report site-directed mutagenesis, biophysical, and molecular modeling studies that provide new insights into quadruplex recognition by the zinc finger scaffold. We show that any one finger of Gq1 can be replaced with the corresponding finger of Zif268, without significant loss of quadruplex affinity or quadruplex versus duplex discrimination. Replacement of two fingers, with one being finger 2, of Gq1 by Zif268 results in significant impairment of quadruplex recognition and loss of discrimination. Molecular modeling suggests that the zinc fingers of Gq1 can bind to the human parallel-stranded quadruplex structure in a stable arrangement, whereas Zif268-quadruplex models show significantly weaker binding energy. Modeling also suggests that an important role of the key protein finger residues in the Gq1-quadruplex complex is to maintain Gq1 in an optimum conformation for quadruplex recognition. 相似文献
74.
Yoshiko Iida I‐Fang Sun Charles A. Price Chien‐Teh Chen Zueng‐Sang Chen Jyh‐Min Chiang Chun‐Lin Huang Nathan G. Swenson 《Ecology and evolution》2016,6(17):6085-6096
A fundamental goal in ecology is to link variation in species function to performance, but functional trait–performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait–performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co‐occurring species in a subtropical forest. Size‐related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species‐average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low‐density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource‐rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some of key traits related to resource‐use strategies, which dictate the demography and distributions of species. 相似文献
75.
Day SM Westfall MV Fomicheva EV Hoyer K Yasuda S La Cross NC D'Alecy LG Ingwall JS Metzger JM 《Nature medicine》2006,12(2):181-189
The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart. 相似文献
76.
Monshausen GB Miller ND Murphy AS Gilroy S 《The Plant journal : for cell and molecular biology》2011,65(2):309-318
Plants adapt to a changing environment by entraining their growth and development to prevailing conditions. Such 'plastic' development requires a highly dynamic integration of growth phenomena with signal perception and transduction systems, such as occurs during tropic growth. The plant hormone auxin has been shown to play a key role in regulating these directional growth responses of plant organs to environmental cues. However, we are still lacking a cellular and molecular understanding of how auxin-dependent signaling cascades link stimulus perception to the rapid modulation of growth patterns. Here, we report that in root gravitropism of Arabidopsis thaliana, auxin regulates root curvature and associated apoplastic, growth-related pH changes through a Ca2+-dependent signaling pathway. Using an approach that integrates confocal microscopy and automated computer vision-based image analysis, we demonstrate highly dynamic root surface pH patterns during vertical growth and after gravistimulation. These pH dynamics are shown to be dependent on auxin, and specifically on auxin transport mediated by the auxin influx carrier AUX1 in cells of the lateral root cap and root epidermis. Our results further indicate that these pH responses require auxin-dependent changes in cytosolic Ca2+ levels that operate independently of the TIR1 auxin perception system. These results demonstrate a methodology that can be used to visualize vectorial auxin responses in a manner that can be integrated with the rapid plant growth responses to environmental stimuli. 相似文献
77.
Jatinder Kaur Mukker Valeriya Kotlyarova Ravi Shankar Prasad Singh Jane Alcorn 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(30):3076-3082
We report a rapid and simple HPLC method with fluorescence detection for the quantification of the major flaxseed lignan, secoisolarisiresinol diglucoside (SDG) and its major metabolites. The method is specific for SDG, secoisolarisiresinol (SECO), enterodiol (ED) and entrolactone (EL) in rat serum. The assay procedure involves chromatographic separation using a Waters Symmetry C18 reversed-phase column (4.6 mm × 150 mm, 5 μm) and mobile phase gradient conditions consisting of acetonitrile (0.1% formic acid) and water (0.1% formic acid). SDG extraction from serum requires the use of Centrifuge filters while SECO, ED and EL are extracted with diethyl ether. The organic layer is evaporated and reconstituted in 100 μL of mobile phase and 50 μL of reconstituted sample or filtrate is injected onto the column. Total run time is 25 min. Calibration curves are linear (r2 ≥ 0.997) from 0.05 to 10 μg/mL for SDG and EL and 0.01–10 μg/mL for SECO and ED. Precision and accuracy are within USFDA specified limits. The stability of all lignans is established in auto-injector, bench-top, freeze–thaw and long-term stability at −80 °C for 30 days. The method's reasonable sensitivity and reliance on more widely available HPLC technology should allow for its straightforward application to pharmacokinetic evaluations of lignans in animal model systems such as the rat. 相似文献
78.
Paramagnetic relaxation enhancements in unfolded proteins: Theory and application to drkN SH3 domain
Yi Xue Ivan S. Podkorytov D. Krishna Rao Nathan Benjamin Honglei Sun Nikolai R. Skrynnikov 《Protein science : a publication of the Protein Society》2009,18(7):1401-1424
Site‐directed spin labeling in combination with paramagnetic relaxation enhancement (PRE) measurements is one of the most promising techniques for studying unfolded proteins. Since the pioneering work of Gillespie and Shortle (J Mol Biol 1997;268:158), PRE data from unfolded proteins have been interpreted using the theory that was originally developed for rotational spin relaxation. At the same time, it can be readily recognized that the relative motion of the paramagnetic tag attached to the peptide chain and the reporter spin such as 1HN is best described as a translation. With this notion in mind, we developed a number of models for the PRE effect in unfolded proteins: (i) mutual diffusion of the two tethered spheres, (ii) mutual diffusion of the two tethered spheres subject to a harmonic potential, (iii) mutual diffusion of the two tethered spheres subject to a simulated mean‐force potential (Smoluchowski equation); (iv) explicit‐atom molecular dynamics simulation. The new models were used to predict the dependences of the PRE rates on the 1HN residue number and static magnetic field strength; the results are appreciably different from the Gillespie–Shortle model. At the same time, the Gillespie–Shortle approach is expected to be generally adequate if the goal is to reconstruct the distance distributions between 1HN spins and the paramagnetic center (provided that the characteristic correlation time is known with a reasonable accuracy). The theory has been tested by measuring the PRE rates in three spin‐labeled mutants of the drkN SH3 domain in 2M guanidinium chloride. Two modifications introduced into the measurement scheme—using a reference compound to calibrate the signals from the two samples (oxidized and reduced) and using peak volumes instead of intensities to determine the PRE rates—lead to a substantial improvement in the quality of data. The PRE data from the denatured drkN SH3 are mostly consistent with the model of moderately expanded random‐coil protein, although part of the data point toward a more compact structure (local hydrophobic cluster). At the same time, the radius of gyration reported by Choy et al. (J Mol Biol 2002;316:101) suggests that the protein is highly expanded. This seemingly contradictory evidence can be reconciled if one assumes that denatured drkN SH3 forms a conformational ensemble that is dominated by extended conformations, yet also contains compact (collapsed) species. Such behavior is apparently more complex than predicted by the model of a random‐coil protein in good solvent/poor solvent. 相似文献
79.
Aline Marnef Maria Maldonado Anthony Bugaut Shankar Balasubramanian Michel Kress Dominique Weil Nancy Standart 《RNA (New York, N.Y.)》2010,16(11):2094-2107
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5′ UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells. 相似文献
80.