首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4781篇
  免费   455篇
  国内免费   4篇
  5240篇
  2023年   47篇
  2022年   94篇
  2021年   175篇
  2020年   110篇
  2019年   117篇
  2018年   135篇
  2017年   127篇
  2016年   174篇
  2015年   292篇
  2014年   303篇
  2013年   295篇
  2012年   444篇
  2011年   434篇
  2010年   217篇
  2009年   215篇
  2008年   291篇
  2007年   259篇
  2006年   235篇
  2005年   209篇
  2004年   181篇
  2003年   147篇
  2002年   124篇
  2001年   34篇
  2000年   20篇
  1999年   23篇
  1998年   28篇
  1997年   19篇
  1996年   22篇
  1995年   17篇
  1994年   17篇
  1993年   16篇
  1992年   24篇
  1991年   18篇
  1990年   15篇
  1989年   20篇
  1988年   19篇
  1987年   15篇
  1986年   14篇
  1985年   19篇
  1984年   11篇
  1983年   14篇
  1982年   15篇
  1981年   20篇
  1980年   13篇
  1979年   19篇
  1978年   10篇
  1977年   15篇
  1976年   12篇
  1975年   12篇
  1974年   13篇
排序方式: 共有5240条查询结果,搜索用时 15 毫秒
971.
Acceptor proteins for poly(adenosine diphosphoribosyl)ation were determined in resting human lymphocytes, in lymphocytes with N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage and in lymphocytes stimulated to proliferate by phytohemagglutinin. Kinetic studies showed that the increase in ADP-ribosylation which occurred in response to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment was greater in magnitude but more transient in duration than that which occurred in phytohemagglutinin-stimulated cells. Gel electrophoretic analyses revealed that MNNG treatment and phytohemagglutinin stimulation both caused an increase in ADP-ribosylation of poly(ADP-ribose) polymerase and core histones. In MNNG-treated cells, an increase in ADP-ribosylation of histone H1 was also observed. In contrast, phytohemagglutinin-stimulated cells showed no increase in ADP-ribosylation of histone H1. In MNNG-treated cells there was also ADP-ribosylation of a protein of molecular weight 62 000, while in phytohemagglutinin-stimulated cells there was a marked increase in ADP-ribosylation of a protein of molecular weight 96000. MNNG treatment of phytohemagglutinin-stimulated cells produced a pattern of ADP-ribosylation that appeared to be due to the combined effects of the individual treatments. 3-Aminobenzamide effectively inhibited ADP-ribosylation under all treatment conditions.  相似文献   
972.
Phosphorus is one of the essential mineral nutrients required by all living cells. Plants assimilate phosphate (P(i)) from the soil, and their root systems encounter tremendous variation in P(i) concentration, both temporally and spatially. Genome sequence data indicate that plant genomes contain large numbers of genes predicted to encode P(i) transporters, the functions of which are largely unexplored. Here we present a comparative analysis of four very closely related P(i) transporters of the PHT1 family of Medicago truncatula. Based on their sequence similarity and locations in the genome, these four genes probably arose via recent gene duplication events, and they form a small subfamily within the PHT1 family. The four genes are expressed in roots with partially overlapping but distinct spatial expression patterns, responses to P(i) and expression during arbuscular mycorrhizal symbiosis. The proteins are located in the plasma membrane. Three members of the subfamily, MtPT1, MtPT2, and MtPT3, show low affinities for P(i). MtPT5 shares 84% amino acid identity with MtPT1, MtPT2, and MtPT3 but shows a high affinity for P(i) with an apparent K(m) in yeast of 13 mum. Sequence comparisons and protein modeling suggest that amino acid residues that differ substantially between MtPT5 and the other three transporters are clustered in two regions of the protein. The data provide the first clues as to amino acid residues that impact transport activity of plant P(i) transporter proteins.  相似文献   
973.
974.
975.
In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.  相似文献   
976.

Background

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD). LRRK2 contains an “enzymatic core” composed of GTPase and kinase domains that is flanked by leucine-rich repeat (LRR) and WD40 protein-protein interaction domains. While kinase activity and GTP-binding have both been implicated in LRRK2 neurotoxicity, the potential role of other LRRK2 domains has not been as extensively explored.

Principal Findings

We demonstrate that LRRK2 normally exists in a dimeric complex, and that removing the WD40 domain prevents complex formation and autophosphorylation. Moreover, loss of the WD40 domain completely blocks the neurotoxicity of multiple LRRK2 PD mutations.

Conclusion

These findings suggest that LRRK2 dimerization and autophosphorylation may be required for the neurotoxicity of LRRK2 PD mutations and highlight a potential role for the WD40 domain in the mechanism of LRRK2-mediated cell death.  相似文献   
977.
978.
979.
Laboratory evolution studies provide fundamental biological insight through direct observation of the evolution process. They not only enable testing of evolutionary theory and principles, but also have applications to metabolic engineering and human health. Genome‐scale tools are revolutionizing studies of laboratory evolution by providing complete determination of the genetic basis of adaptation and the changes in the organism's gene expression state. Here, we review studies centered on four central themes of laboratory evolution studies: (1) the genetic basis of adaptation; (2) the importance of mutations to genes that encode regulatory hubs; (3) the view of adaptive evolution as an optimization process; and (4) the dynamics with which laboratory populations evolve.  相似文献   
980.
The APOBEC3 cytidine deaminases play a critical role in host-mediated defense against exogenous viruses, most notably, human immunodeficiency virus type-1 (HIV-1) and endogenous transposable elements. APOBEC3G and APOBEC3F interact with numerous proteins that regulate cellular RNA metabolism, including components of the RNA-induced silencing complex (RISC), and colocalize with a subset of these proteins to mRNA processing bodies (P bodies), which are sites of mRNA translational repression and decay. We sought to determine the role of P bodies and associated proteins in HIV-1 replication and APOBEC3 antiviral activity. While we established a positive correlation between APOBEC3 protein incorporation into virions and localization to P bodies, depletion of the P-body components DDX6 or Lsm1 did not affect HIV-1 replication, APOBEC3 packaging into virions or APOBEC3 protein mediated inhibition of HIV-1 infectivity. In addition, neither HIV-1 genomic RNA nor Gag colocalized with P-body proteins. However, simultaneous depletion of multiple Argonaute family members, the effector proteins of RISC, could modestly increase viral infectivity. Because some APOBEC3 proteins interact with several Argonaute proteins, we also tested whether they could modulate microRNA (miRNA) activity. We found no evidence for the specific regulation of miRNA function by the APOBEC3 proteins, though more general effects on transfected gene expression were observed. In sum, our results indicate that P bodies and certain associated proteins do not regulate HIV-1 replication or APOBEC3 protein antiviral activity. Localization to P bodies may therefore provide a means of sequestering APOBEC3 enzymatic activity away from cellular DNA or may be linked to as yet unidentified cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号