首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4781篇
  免费   455篇
  国内免费   4篇
  5240篇
  2023年   47篇
  2022年   94篇
  2021年   175篇
  2020年   110篇
  2019年   117篇
  2018年   135篇
  2017年   127篇
  2016年   174篇
  2015年   292篇
  2014年   303篇
  2013年   295篇
  2012年   444篇
  2011年   434篇
  2010年   217篇
  2009年   215篇
  2008年   291篇
  2007年   259篇
  2006年   235篇
  2005年   209篇
  2004年   181篇
  2003年   147篇
  2002年   124篇
  2001年   34篇
  2000年   20篇
  1999年   23篇
  1998年   28篇
  1997年   19篇
  1996年   22篇
  1995年   17篇
  1994年   17篇
  1993年   16篇
  1992年   24篇
  1991年   18篇
  1990年   15篇
  1989年   20篇
  1988年   19篇
  1987年   15篇
  1986年   14篇
  1985年   19篇
  1984年   11篇
  1983年   14篇
  1982年   15篇
  1981年   20篇
  1980年   13篇
  1979年   19篇
  1978年   10篇
  1977年   15篇
  1976年   12篇
  1975年   12篇
  1974年   13篇
排序方式: 共有5240条查询结果,搜索用时 15 毫秒
51.
52.
PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3′ untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA''s polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation.  相似文献   
53.

Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,β-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3–β11 and β7–α2. From the catalytic Asp located in α3 to a conserved Pro in β11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.

  相似文献   
54.
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency‐dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency‐dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant–microbe interactions influence plant diversity.  相似文献   
55.
Aging and obesity increase multimorbidity and disability risk, and determining interventions for reversing healthspan decline is a critical public health priority. Exercise and time‐restricted feeding (TRF) benefit multiple health parameters when initiated in early life, but their efficacy and safety when initiated at older ages are uncertain. Here, we tested the effects of exercise versus TRF in diet‐induced obese, aged mice from 20 to 24 months of age. We characterized healthspan across key domains: body composition, physical, metabolic, and cardiovascular function, activity of daily living (ADL) behavior, and pathology. We demonstrate that both exercise and TRF improved aspects of body composition. Exercise uniquely benefited physical function, and TRF uniquely benefited metabolism, ADL behavior, and circulating indicators of liver pathology. No adverse outcomes were observed in exercised mice, but in contrast, lean mass and cardiovascular maladaptations were observed following TRF. Through a composite index of benefits and risks, we conclude the net healthspan benefits afforded by exercise are more favorable than those of TRF. Extrapolating to obese older adults, exercise is a safe and effective option for healthspan improvement, but additional comprehensive studies are warranted before recommending TRF.  相似文献   
56.
The differential metabolic effects of three nicotinamide analogs, 6-aminonicotinamide, 3-aminobenzamide, and 5-methylnicotinamide, were analyzed in mitogen-stimulated preparations of human T lymphocytes. Mitogen stimulation with the phorbol ester TPA and a monoclonal antibody to the T3 cell surface antigen caused an increase in cellular NAD and ATP levels and a marked increase in glucose metabolism as demonstrated by an increase in cellular levels of glucose 6-phosphate and a sevenfold increase in radioactive CO2 formation from [l-14C]glucose. 6-Aminonicotinamide had drastic inhibitory effects on the mitogen-stimulated increases in NAD and ATP levels as well as on the metabolism of glucose. Treatment of the mitogen-stimulated cells with 6-aminonicotinamide also caused a marked increase in cellular levels of 6-phosphogluconate, suggesting inhibition of the hexose monophosphate shunt at 6-phosphogluconate dehydrogenase. Radioactive CO2 formation from [6-14C]glucose showed that metabolism through the tricarboxylic acid cycle was not used to compensate for the inhibition of the hexose monophosphate shunt pathway. Treatment of cells with 3-aminobenzamide had the opposite effect of 6-aminonicotinamide in that cellular NAD levels increased, presumable due to inhibition of poly(ADP-ribose) polymerase. 3-Aminobenzamide did not interfere with ATP or glucose 6-phosphate levels and did not cause significant elevations of 6-phosphogluconate. Thus, 6-aminonicotinamide appears to have direct inhibitory effects on the synthesis of both pyridine nucleotides and poly(ADP-ribose), whereas 3-aminobenzamide has its major inhibitory effect on poly(ADP-ribose) synthesis. 5-Methylnicotinamide also interferes with the mitogen-stimulated increase in NAD levels but not as effectively as 6-aminonicotinamide. The alterations in pyridine nucleotide metabolism resulting from treatment with these nicotinamide analogs can produce drastic and diverse alterations in pathways of glucose utilization and energy generation.  相似文献   
57.
58.
The embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.  相似文献   
59.
Two new beta-lactoglobulin (BLG)/human serum albumin (HSA) hybrid gene vectors were constructed and tested for expression in COS-7 cells and in transgenic mice. The HSA sequences were inserted between the second and sixth BLG exons. Transient transfection experiments with these vectors as well as a series of additional vectors with either the BLG 5'- or 3'- intragenic sequences revealed that sequences within BLG exon 1/intron 1/exon 2 abrogated BLG- directed HSA expression in vitro, regardless of the presence of HSA introns or the origin of the 3' polyadenylation signal. In contrast, the same BLG expression cassette enabled the efficient expression of HSA cDNA or minigene in the mammary gland of transgenic mice with subsequent secretion of the corresponding protein into the milk of 56 and 82%, respectively of the mouse strains at levels up to 0.3 mg/ml. Previous attempts to express HSA cDNA inserted into exon 1 of the BLG gene had failed [Shani,M., Barash,I., Nathan,M., Ricca,G., Searfoss,G.H., Dekel,I., Faerman,A., Givol,D. and Hurwitz,D.R. (1992) Transgenic Res. 1, 195- 208]. The new BLG expression cassette conferred more stringent tissue specific expression than previously described BLG/HSA constructs [Barash,I, Faerman,A., Ratovitsky,T, Puzis,R., Nathan,M., Hurwitz,D.R. and Shani, M. (1994) Transgenic Res. 3, 141-151]. However, it was not able to insulate the transgenes from the surrounding host DNA sequences and did not result in copy number dependent expression in transgenics. Together, the in vitro and in vivo results suggest both positive and negative regulatory elements within the BLG intragenic sequences evaluated. The new BLG construct represents an extremely valuable vector for the efficient expression of cDNAs in the mammary gland of transgenic animals.  相似文献   
60.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号