首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4855篇
  免费   467篇
  国内免费   4篇
  5326篇
  2023年   47篇
  2022年   96篇
  2021年   175篇
  2020年   110篇
  2019年   117篇
  2018年   135篇
  2017年   129篇
  2016年   177篇
  2015年   295篇
  2014年   304篇
  2013年   297篇
  2012年   448篇
  2011年   436篇
  2010年   219篇
  2009年   216篇
  2008年   299篇
  2007年   261篇
  2006年   237篇
  2005年   208篇
  2004年   181篇
  2003年   151篇
  2002年   125篇
  2001年   33篇
  2000年   19篇
  1999年   24篇
  1998年   27篇
  1997年   20篇
  1996年   21篇
  1995年   18篇
  1994年   14篇
  1993年   16篇
  1992年   22篇
  1991年   17篇
  1990年   19篇
  1989年   22篇
  1988年   15篇
  1987年   15篇
  1986年   18篇
  1985年   17篇
  1984年   12篇
  1983年   16篇
  1982年   16篇
  1981年   21篇
  1980年   13篇
  1979年   21篇
  1978年   21篇
  1977年   18篇
  1976年   17篇
  1975年   20篇
  1974年   17篇
排序方式: 共有5326条查询结果,搜索用时 0 毫秒
81.
The role of mutation rate in optimizing key features of evolutionary dynamics has recently been investigated in various computational models. Here, we address the related question of how maximum mutation size affects the formation of species in a simple computational evolutionary model. We find that the number of species is maximized for intermediate values of a mutation size parameter μ; the result is observed for evolving organisms on a randomly changing landscape as well as in a version of the model where negative feedback exists between the local population size and the fitness provided by the landscape. The same result is observed for various distributions of mutation values within the limits set by μ. When organisms with various values of μ compete against each other, those with intermediate μ values are found to survive. The surviving values of μ from these competition simulations, however, do not necessarily coincide with the values that maximize the number of species. These results suggest that various complex factors are involved in determining optimal mutation parameters for any population, and may also suggest approaches for building a computational bridge between the (micro) dynamics of mutations at the level of individual organisms and (macro) evolutionary dynamics at the species level.  相似文献   
82.
Two strains of the parvovirus minute virus of mice (MVM), the immunosuppressive (MVMi) and the prototype (MVMp) strains, display disparate in vitro tropism and in vivo pathogenicity. We report the crystal structures of MVMp virus-like particles (MVMp(b)) and native wild-type (wt) empty capsids (MVMp(e)), determined and refined to 3.25 and 3.75 A resolution, respectively, and their comparison to the structure of MVMi, also refined to 3.5 A resolution in this study. A comparison of the MVMp(b) and MVMp(e) capsids showed their structures to be the same, providing structural verification that some heterologously expressed parvovirus capsids are indistinguishable from wt capsids produced in host cells. The structures of MVMi and MVMp capsids were almost identical, but local surface conformational differences clustered from symmetry-related capsid proteins at three specific domains: (i) the icosahedral fivefold axis, (ii) the "shoulder" of the protrusion at the icosahedral threefold axis, and (iii) the area surrounding the depression at the icosahedral twofold axis. The latter two domains contain important determinants of MVM in vitro tropism (residues 317 and 321) and forward mutation residues (residues 399, 460, 553, and 558) conferring fibrotropism on MVMi. Furthermore, these structural differences between the MVM strains colocalize with tropism and pathogenicity determinants mapped for other autonomous parvovirus capsids, highlighting the importance of common parvovirus capsid regions in the control of virus-host interactions.  相似文献   
83.
Classic cancer research for several decades has focused on understanding the biology of tumor cells in vitro. However, extending these findings to in vivo settings has been impeded owing to limited insights on the impact of microenvironment on tumor cells. We hypothesized that tumor cell biology and treatment response would be more informative when done in the presence of stromal components, like endothelial cells, which exist in the tumor microenvironment. To that end, we have developed a system to grow three-dimensional cultures of GFP-4T1 mouse mammary tumor and 2H11 murine endothelial cells in hanging drops of medium in vitro. The presence of 2H11 endothelial cells in these three-dimensional cocultures was found to sensitize 4T1-GFP tumor cells to chemotherapy (Taxol) and, at the same time, protect cells from ionizing radiation. These spheroidal cultures can also be implanted into the dorsal skinfold window chamber of mice for fluorescence imaging of vascularization and disease progression/treatment response. We observed rapid neovascularization of the tumor-endothelial spheroids in comparison to tumor spheroids grown in nude mice. Molecular analysis revealed pronounced up-regulation of several proangiogenic factors in the tumor tissue derived from the tumor-endothelial spheroids compared with tumor-only spheroids. Furthermore, the rate of tumor growth from tumor-endothelial spheroids in mice was faster than the tumor cell-only spheroids, resulting in greater metastasis to the lung. This three-dimensional coculture model presents an improved way to investigate more pertinent aspects of the therapeutic potential for radiation and/or chemotherapy alone and in combination with antiangiogenic agents.  相似文献   
84.
Plants adapt to a changing environment by entraining their growth and development to prevailing conditions. Such 'plastic' development requires a highly dynamic integration of growth phenomena with signal perception and transduction systems, such as occurs during tropic growth. The plant hormone auxin has been shown to play a key role in regulating these directional growth responses of plant organs to environmental cues. However, we are still lacking a cellular and molecular understanding of how auxin-dependent signaling cascades link stimulus perception to the rapid modulation of growth patterns. Here, we report that in root gravitropism of Arabidopsis thaliana, auxin regulates root curvature and associated apoplastic, growth-related pH changes through a Ca2+-dependent signaling pathway. Using an approach that integrates confocal microscopy and automated computer vision-based image analysis, we demonstrate highly dynamic root surface pH patterns during vertical growth and after gravistimulation. These pH dynamics are shown to be dependent on auxin, and specifically on auxin transport mediated by the auxin influx carrier AUX1 in cells of the lateral root cap and root epidermis. Our results further indicate that these pH responses require auxin-dependent changes in cytosolic Ca2+ levels that operate independently of the TIR1 auxin perception system. These results demonstrate a methodology that can be used to visualize vectorial auxin responses in a manner that can be integrated with the rapid plant growth responses to environmental stimuli.  相似文献   
85.
Many G protein-coupled receptors (GPCRs) possess allosteric binding sites distinct from the orthosteric site utilized by their cognate ligands, but most GPCR allosteric modulators reported to date lack signaling efficacy in their own right. McN-A-343 (4-(N-(3-chlorophenyl)carbamoyloxy)-2-butynyltrimethylammonium chloride) is a functionally selective muscarinic acetylcholine receptor (mAChR) partial agonist that can also interact allosterically at the M(2) mAChR. We hypothesized that this molecule simultaneously utilizes both an allosteric and the orthosteric site on the M(2) mAChR to mediate these effects. By synthesizing progressively truncated McN-A-343 derivatives, we identified two, which minimally contain 3-chlorophenylcarbamate, as pure allosteric modulators. These compounds were positive modulators of the orthosteric antagonist N-[(3)H]methylscopolamine, but in functional assays of M(2) mAChR-mediated ERK1/2 phosphorylation and guanosine 5'-3-O-([(35)S]thio)triphosphate binding, they were negative modulators of agonist efficacy. This negative allosteric effect was diminished upon mutation of Y177A in the second extracellular (E2) loop of the M(2) mAChR that is known to reduce prototypical allosteric modulator potency. Our results are consistent with McN-A-343 being a bitopic orthosteric/allosteric ligand with the allosteric moiety engendering partial agonism and functional selectivity. This finding suggests a novel and largely unappreciated mechanism of "directed efficacy" whereby functional selectivity may be engendered in a GPCR by utilizing an allosteric ligand to direct the signaling of an orthosteric ligand encoded within the same molecule.  相似文献   
86.
Coordinate regulation of Phase-I and -II enzymes with xenobiotic transporters has been shown after treatment with microsomal enzyme inducers. The chemopreventive agent oltipraz (OPZ) induces Phase-I and -II drug-metabolizing enzymes such as CYP2B and NQO1. The purpose of this study was to examine the regulation of drug-metabolizing enzymes and transporters in response to OPZ treatment and to investigate a potential role for constitutive androstane receptor (CAR) in OPZ-mediated induction. Sprague-Dawley rats treated with OPZ exhibited increased mRNA and protein levels of both Nqo1 and Cyp2b1/2 by 24 h. To examine whether OPZ activates transporter gene expression via CAR, sexually dimorphic male and female Wistar-Kyoto (WKY) rats were treated with OPZ and mRNA levels quantified by bDNA signal amplification. OPZ induced Ugt1a6 and Ugt2b1 in males significantly higher than in females, indicating a CAR-dependent mechanism of induction. However, OPZ induced microsomal epoxide hydrolase, NAD(P)H quinone oxidoreductase, and Cyp3a1/23 equally in both genders, indicating a CAR-independent mechanism of induction of these genes. Similarly, the transporters Mdr1a, Mdr1b, Mrp3, and Mrp4 were induced by OPZ without any apparent difference between genders. In summary, OPZ coordinately increases multiple hepatic xenobiotic transporter mRNA levels, along with Phase-I and -II enzymes some of which may occur through CAR-dependent mechanisms.  相似文献   
87.
Insects provide examples of many cunning stratagems to cope with the challenges of living in a world dominated by surface forces. Despite being the current masters of the land environment, they are at constant risk of being entrapped in liquids, which they prevent by having waxy and hairy surfaces. The problem is particularly acute in an enclosed space, such as a plant gall. Using secreted wax to efficiently parcel and transport their own excrement, aphids were able to solve this problem 200 Myr ago. Here, we report on the physical and physiological significance of this ingenious solution. The secreted powdery wax has three distinct roles: (i) it is hydrophobic, (ii) it creates a microscopically rough inner gall surface made of weakly compacted wax needles making the gall ultra-hydrophobic, and (iii) it coats the honeydew droplets converting them into liquid marbles, that can be rapidly and efficiently moved.  相似文献   
88.
Tokuda G  Watanabe H  Lo N 《Gene》2007,401(1-2):131-134
Termites play an important role in degradation of dead plant materials in nature. Over the last century, many researchers have investigated the mechanisms of their lignocellulose digesting system. A recent publication by Zhou et al. (Zhou, X., Smith, J.A., Oi, F.M., Koehler, P.G., Bennett, G.W., Scharf, M.E., 2007. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395, 29-39) dealt with the cellulolytic system of the flagellate-harboring termite R. flavipes and suggested "the presence of a single unified cellulose digestion system" in the termite, as an alternative hypothesis of a "dual (i.e. endogenous and symbiotic) cellulose digesting system" proposed by Nakashima et al. (Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G., Azuma, J.-I., 2002. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Mol. Biol. 32, 777-784). Here we show that their results actually support a dual cellulose digesting system rather than "a single unified cellulose digestion system". In addition, potential problems with their results are highlighted.  相似文献   
89.
Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection.  相似文献   
90.
Chemicals that activate nuclear factor-E2-related factor 2 (Nrf2) often increase multidrug-resistance-associated protein (Mrp) expression in liver. Hepatocyte-specific deletion of Kelch-like ECH-associated protein 1 (Keap1) activates Nrf2. Use of hepatocyte-specific Keap1 deletion represents a nonpharmacological method to determine whether constitutive Nrf2 activation upregulates liver transporter expression in vivo. The mRNA, protein expression, and localization of several biotransformation and transporters were determined in livers of wild-type and hepatocyte-specific Keap1-null mice. Sulfotransferase 2a1/2, NADP(H):quinone oxidoreductase 1, cytochrome P450 2b10, 3a11, and glutamate-cysteine ligase catalytic subunit expression were increased in livers of Keap1-null mice. Organic anion-transporting polypeptide 1a1 expression was nearly abolished, as compared to that detected in livers of wild-type mice. By contrast, Mrp 1-5 mRNA and protein levels were increased in Keap1-null mouse livers, with Mrp4 expression being more than 15-fold higher than wild types. In summary, Nrf2 has a significant role in affecting Oatp and Mrp expressions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号