首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5102篇
  免费   470篇
  国内免费   4篇
  2023年   43篇
  2022年   95篇
  2021年   176篇
  2020年   113篇
  2019年   121篇
  2018年   144篇
  2017年   132篇
  2016年   176篇
  2015年   299篇
  2014年   318篇
  2013年   313篇
  2012年   456篇
  2011年   452篇
  2010年   228篇
  2009年   225篇
  2008年   304篇
  2007年   272篇
  2006年   242篇
  2005年   220篇
  2004年   198篇
  2003年   162篇
  2002年   135篇
  2001年   42篇
  2000年   24篇
  1999年   30篇
  1998年   35篇
  1997年   21篇
  1996年   27篇
  1995年   20篇
  1994年   15篇
  1993年   17篇
  1992年   30篇
  1991年   19篇
  1990年   15篇
  1989年   26篇
  1988年   12篇
  1987年   22篇
  1986年   17篇
  1985年   21篇
  1984年   16篇
  1983年   16篇
  1982年   16篇
  1981年   24篇
  1980年   15篇
  1979年   27篇
  1978年   15篇
  1977年   15篇
  1976年   12篇
  1975年   15篇
  1974年   15篇
排序方式: 共有5576条查询结果,搜索用时 15 毫秒
991.
BackgroundDevelopment of noninvasive molecular assays to improve disease diagnosis and patient monitoring is a critical need. In renal transplantation, acute rejection (AR) increases the risk for chronic graft injury and failure. Noninvasive diagnostic assays to improve current late and nonspecific diagnosis of rejection are needed. We sought to develop a test using a simple blood gene expression assay to detect patients at high risk for AR.ConclusionsThe kSORT blood QPCR assay is a noninvasive tool to detect high risk of AR of renal transplants.Please see later in the article for the Editors'' Summary  相似文献   
992.
The majority of melanomas have been shown to harbor somatic mutations in the RAS-RAF-MEK-MAPK and PI3K-AKT pathways, which play a major role in regulation of proliferation and survival. The prevalence of these mutations makes these kinase signal transduction pathways an attractive target for cancer therapy. However, tumors have generally shown adaptive resistance to treatment. This adaptation is achieved in melanoma through its ability to undergo neovascularization, migration and rearrangement of signaling pathways. To understand the dynamic, nonlinear behavior of signaling pathways in cancer, several computational modeling approaches have been suggested. Most of those models require that the pathway topology remains constant over the entire observation period. However, changes in topology might underlie adaptive behavior to drug treatment. To study signaling rearrangements, here we present a new approach based on Fuzzy Logic (FL) that predicts changes in network architecture over time. This adaptive modeling approach was used to investigate pathway dynamics in a newly acquired experimental dataset describing total and phosphorylated protein signaling over four days in A375 melanoma cell line exposed to different kinase inhibitors. First, a generalized strategy was established to implement a parameter-reduced FL model encoding non-linear activity of a signaling network in response to perturbation. Next, a literature-based topology was generated and parameters of the FL model were derived from the full experimental dataset. Subsequently, the temporal evolution of model performance was evaluated by leaving time-defined data points out of training. Emerging discrepancies between model predictions and experimental data at specific time points allowed the characterization of potential network rearrangement. We demonstrate that this adaptive FL modeling approach helps to enhance our mechanistic understanding of the molecular plasticity of melanoma.  相似文献   
993.
994.
In the developing kidney, self-renewing progenitors respond to inductive signaling from the adjacent branching ureteric bud by undergoing mesenchyme-to-epithelium transition. Nascent nephrons subsequently undergo elongation, segmentation, and differentiation into a mature renal epithelium with diverse functions. Epigenetic mechanisms have been implicated in impacting cell fate decisions during nephrogenesis; however, the chromatin landscape of nephron progenitors and daughter differentiating cells are largely unknown. Here, we examined the spatiotemporal expression patterns of histone H3 methylation and histone methyltransferases in E15.5 mouse kidneys. Kidney sections were probed with antibodies against histone modifications, enzymes, and markers of progenitors and differentiation. The results revealed that: (1) nephron progenitor cells exhibit a broad histone methylation signature that comprises both “active” and “repressive” marks (H3K4me3/K9me3/K27me3/R2me2/R17me2); (2) nascent nephrons retain high H3K4me3 but show downregulation of H3K9/K27me3 and; (3) maturing epithelial tubules acquire high levels of H3K79me2/3. Consistent with respective histone marks, the H3K4 methyltransferase, Ash2l, is expressed in progenitors and nascent nephrons, whereas the H3K9/K27 methyltransferases, G9a/Ezh2, are more enriched in progenitors than nascent nephrons. We conclude that combinatorial histone signatures correlate with cell fate decisions during nephrogenesis.  相似文献   
995.
Cobalt and potassium are biologically important metal elements that are present in a large array of proteins. Cobalt is mostly found in vivo associated with a corrin ring, which represents the core of the vitamin B12 molecule. Potassium is the most abundant metal in the cytosol, and it plays a crucial role in maintaining membrane potential as well as correct protein function. Here, we report a thorough analysis of the geometric properties of cobalt and potassium coordination spheres that was performed with high resolution on a representative set of structures from the Protein Data Bank and complemented by quantum mechanical calculations realized at the DFT level of theory (B3LYP/ SDD) on mononuclear model systems. The results allowed us to draw interesting conclusions on the structural characteristics of both Co and K centers, and to evaluate the importance of effects such as their association energies and intrinsic thermodynamic stabilities. Overall, the results obtained provide useful data for enhancing the atomic models normally applied in theoretical and computational studies of Co or K proteins performed at the quantum mechanical level, and for developing molecular mechanical parameters for treating Co or K coordination spheres in molecular mechanics or molecular dynamics studies.
Figure
Cobalt and potassium are biologically crucial metals that are present in a wide array of proteins. Here, a thorough analysis was performed of the geometric properties of Co and K coordination spheres and quantum mechanical calculations on mononuclear model systems. These results can be employed to enhance atomic QM models applied to the theoretical study of Co or K proteins, and to develop molecular mechanical parameters for use in molecular mechanics studies  相似文献   
996.
997.
We used simulated magnetic displacements to test orientation preferences of juvenile steelhead trout (Oncorhynchus mykiss) exposed to magnetic fields existing at the northernmost and southernmost boundaries of their oceanic range. Fish reared in natural magnetic conditions distinguished between these two fields by orienting in opposite directions, with headings that would lead fish towards marine foraging grounds. However, fish reared in a spatially distorted magnetic field failed to distinguish between the experimental fields and were randomly oriented. The non-uniform field in which fish were reared is probably typical of fields that many hatchery fish encounter due to magnetic distortions associated with the infrastructure of aquaculture. Given that the reduced navigational abilities we observed could negatively influence marine survival, homing ability and hatchery efficiency, we recommend further study on the implications of rearing salmonids in unnatural magnetic fields.  相似文献   
998.
Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring‐gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk‐averse gliding airspeed), we found that inter‐ and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk‐sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.  相似文献   
999.

Background

Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood.

Results

Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species.

Conclusions

Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0565-1) contains supplementary material, which is available to authorized users.  相似文献   
1000.
Aging is associated with the development of insulin resistance, increased adiposity, and accumulation of ectopic lipid deposits in tissues and organs. Starting in mid‐life there is a progressive decline in lean muscle mass associated with the preferential loss of glycolytic, fast‐twitch myofibers. However, it is not known to what extent muscle loss and metabolic dysfunction are causally related or whether they are independent epiphenomena of the aging process. Here, we utilized a skeletal‐muscle‐specific, conditional transgenic mouse expressing a constitutively active form of Akt1 to examine the consequences of glycolytic, fast‐twitch muscle growth in young vs. middle‐aged animals fed standard low‐fat chow diets. Activation of the Akt1 transgene led to selective skeletal muscle hypertrophy, reversing the loss of lean muscle mass observed upon aging. The Akt1‐mediated increase in muscle mass led to reductions in fat mass and hepatic steatosis in older animals, and corrected age‐associated impairments in glucose metabolism. These results indicate that the loss of lean muscle mass is a significant contributor to the development of age‐related metabolic dysfunction and that interventions that preserve or restore fast/glycolytic muscle may delay the onset of metabolic disease.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号