首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6484篇
  免费   562篇
  国内免费   6篇
  7052篇
  2023年   32篇
  2022年   72篇
  2021年   128篇
  2020年   83篇
  2019年   91篇
  2018年   103篇
  2017年   91篇
  2016年   172篇
  2015年   276篇
  2014年   294篇
  2013年   433篇
  2012年   553篇
  2011年   479篇
  2010年   303篇
  2009年   315篇
  2008年   373篇
  2007年   394篇
  2006年   382篇
  2005年   364篇
  2004年   344篇
  2003年   314篇
  2002年   335篇
  2001年   108篇
  2000年   85篇
  1999年   85篇
  1998年   86篇
  1997年   52篇
  1996年   49篇
  1995年   53篇
  1994年   36篇
  1993年   35篇
  1992年   56篇
  1991年   38篇
  1990年   44篇
  1989年   23篇
  1988年   33篇
  1987年   28篇
  1986年   23篇
  1985年   16篇
  1984年   13篇
  1983年   21篇
  1982年   19篇
  1981年   15篇
  1979年   27篇
  1978年   14篇
  1977年   12篇
  1976年   12篇
  1974年   18篇
  1971年   13篇
  1968年   12篇
排序方式: 共有7052条查询结果,搜索用时 15 毫秒
81.
The study of protistan functional diversity is crucial to understand the dynamics of oceanic ecological processes. We combined the metabarcoding data of various coastal ecosystems and a newly developed trait-based approach to study the link between taxonomic and functional diversity across marine protistan communities of different size-classes. Environmental DNA was extracted and the V4 18S rDNA genomic region was amplified and sequenced. In parallel, we tried to annotate the operational taxonomic units (OTUs) from our metabarcoding dataset to 30 biological traits using published and accessible information on protists. We then developed a method to study trait correlations across protists (i.e. trade-offs) in order to build the best functional groups. Based on the annotated OTUs and our functional groups, we demonstrated that the functional diversity of marine protist communities varied in parallel with their taxonomic diversity. The coupling between functional and taxonomic diversity was conserved across different protist size classes. However, the smallest size-fraction was characterized by wider taxonomic and functional groups diversity, corroborating the idea that nanoplankton and picoplankton are part of a more stable ecological background on which larger protists and metazoans might develop.  相似文献   
82.
The mechanical power (Wtot, W·kg–1) developed during ten revolutions of all-out periods of cycle ergometer exercise (4–9 s) was measured every 5–6 min in six subjects from rest or from a baseline of constant aerobic exercise [50%–80% of maximal oxygen uptake (VO2max)] of 20–40 min duration. The oxygen uptake [VO2 (W·kg–1, 1 ml O2 = 20.9 J)] and venous blood lactate concentration ([la]b, mM) were also measured every 15 s and 2 min, respectively. During the first all-out period, Wtot decreased linearly with the intensity of the priming exercise (Wtot = 11.9–0.25·VO2). After the first all-out period (i greater than 5–6 min), and if the exercise intensity was less than 60% VO2max, Wtot, VO2 and [la]b remained constant until the end of the exercise. For exercise intensities greater than 60% VO2max, VO2 and [la]b showed continuous upward drifts and Wtot continued decreasing. Under these conditions, the rate of decrease of Wtot was linearly related to the rate of increase of V [(d Wtot/dt) (W·kg–1·s–1) = 5.0·10–5 –0.20·(d VO2/dt) (W·kg–1·s–1)] and this was linearly related to the rate of increase of [la]b [(d VO2/dt) (W·kg–1·s–1) = 2.310–4 + 5.910–5·(d [la]b/dt) (mM·s–1)]. These findings would suggest that the decrease of Wtot during the first all-out period was due to the decay of phosphocreatine concentration in the exercising muscles occurring at the onset of exercise and the slow drifts of VO2 (upwards) and of Wtot (downwards) during intense exercise at constant Wtot could be attributed to the continuous accumulation of lactate in the blood (and in the working muscles).  相似文献   
83.
Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family.Receptor-like kinases (RLKs) constitute one of the largest gene families in plants and expanded massively in land plants (Embryophyta; Lehti-Shiu et al., 2009, 2012). For plant RLK gene families, the functions of most members are often not known (especially in recently expanded families), but some described functions include innate immunity (Albert et al., 2010), pathogen response (Dodds and Rathjen, 2010), abiotic stress (Yang et al., 2010), development (De Smet et al., 2009), and sometimes multiple functions (Lehti-Shiu et al., 2012). The RLKs usually consist of three domains: an N-terminal extracellular domain, a transmembrane domain, and a C-terminal kinase domain (KD). In plants, the KD usually has a Ser/Thr specificity (Shiu and Bleecker, 2001), but Tyr-specific RLKs were also described (e.g. BRASSINOSTEROID INSENSITIVE1; Oh et al., 2009). Interestingly, it was estimated that approximately 20% of RLKs contain a catalytically inactive KD (e.g. STRUBBELIG and CORYNE; Chevalier et al., 2005; Castells and Casacuberta, 2007; Gish and Clark, 2011). In Arabidopsis (Arabidopsis thaliana), 44 RLK subgroups (SGs) were defined by inferring the phylogenetic relationships between the KDs (Shiu and Bleecker, 2001). Interestingly, different SGs show different duplication/retention rates (Lehti-Shiu et al., 2009). Specifically, RLKs involved in stress responses show a high number of tandemly duplicated genes whereas those involved in development do not (Shiu et al., 2004), which suggests that some RLK genes are important for the responses of land plants to a changing environment (Lehti-Shiu et al., 2012). There seem to be relatively few RLK pseudogenes compared with other large gene families, and copy retention was argued to be driven by both drift and selection (Zou et al., 2009; Lehti-Shiu et al., 2012). As most SGs are relatively old and RLK subfamilies expanded independently in several plant lineages, duplicate retention cannot be explained by drift alone, and natural selection is expected to be an important driving factor in RLK gene family retention (Lehti-Shiu et al., 2009).Leucine-rich repeat-receptor-like kinases (LRR-RLKs), which contain up to 30 leucine-rich repeat (LRRs) in their extracellular domain, constitute the largest RLK family (Shiu and Bleecker, 2001). Based on the KD, 15 LRR-RLK SGs have been established in Arabidopsis (Shiu et al., 2004; Lehti-Shiu et al., 2009). So far, two major functions have been attributed to them: defense against pathogens and development (Tang et al., 2010b). LRR-RLKs involved in defense are predominantly found in lineage-specific expanded (LSE) gene clusters, whereas LRR-RLKs involved in development are mostly found in nonexpanded groups (Tang et al., 2010b). It was also discovered that the LRR domains are significantly less conserved than the remaining domains of the LRR-RLK genes (Tang et al., 2010b). In addition, a study of four plant genomes (Arabidopsis, grape [Vitis vinifera], poplar [Populus trichocarpa], and rice [Oryza sativa]) showed that LRR-RLK genes from LSE gene clusters show significantly more indications of positive selection or relaxed constraint than LRR-RLKs from nonexpanded groups (Tang et al., 2010b).The genomes of flowering plants (angiosperms) have been shown to be highly dynamic compared with most other groups of land plants (Leitch and Leitch, 2012). This dynamic is mostly caused by the frequent multiplication of genetic material, followed by a complex pattern of differential losses (i.e. the fragmentation process) and chromosomal rearrangements (Langham et al., 2004; Leitch and Leitch, 2012). Most angiosperm genomes sequenced so far show evidence for at least one whole-genome multiplication event during their evolution (Jaillon et al., 2007; D’Hont et al., 2012; Tomato Genome Consortium, 2012). At a smaller scale, tandem and segmental duplications are also very common in angiosperms (Arabidopsis Genome Initiative, 2000; International Rice Genome Sequencing Project, 2005; Rizzon et al., 2006). Although the most common fate of duplicated genes is to be progressively lost, in some cases they can be retained in the genome, and adaptive as well as nonadaptive scenarios have been discussed to play a role in this preservation process (for review, see Moore and Purugganan, 2005; Hahn, 2009; Innan, 2009; Innan and Kondrashov, 2010). Whole-genome sequences also revealed that the same gene may undergo several rounds of duplication and retention. These LSE genes were shown to evolve under positive selection more frequently than single-copy genes in angiosperms (Fischer et al., 2014). That study analyzed general trends over whole genomes. Here, we ask if, and to what extent, this trend is observable at LRR-RLK genes. As this gene family is very dynamic and large, and in accordance with the results of Tang et al. (2010b), we expect the effect of positive selection to be even more pronounced than in the whole-genome average.We analyzed 33 Embryophyta genomes to investigate the evolutionary history of the LRR-RLK gene family in a phylogenetic framework. Twenty LRR-RLK SGs were identified, and from this data set, we deciphered the evolutionary dynamics of this family within angiosperms. The expansion/reduction rates were contrasted between SGs and species as well as in ancestral branches of the angiosperm phylogeny. We then focused on genes whose number increased dramatically in an SG- and/or species-specific manner (i.e. LSE genes). Those genes are likely to be involved in species-specific cellular processes or adaptive interactions and were used as a template to infer the potential occurrence of positive selection. This led to the identification of sites at which positive selection likely acted. We discuss our results in the light of angiosperm genome evolution and current knowledge of LRR-RLK functions. Positive selection footprints identified in LSE genes highlight the importance of combining evolutionary analysis and functional knowledge to guide further investigations.  相似文献   
84.
 A novel thermophilic Gram-positive bacillus, “Bacillus thermoantarcticus”, isolated from geothermal soil near the crater of Mount Melbourne, is described. The organism grows at an optimal temperature of 63°C at pH 6.0, is oxidase-positive, catalase-negative and produces an exopolysaccharide, an exocellular xylanase, an intracellular alcohol dehydrogenase and exo- and endocellular α-glucosidase(s). The sequence of 16S rDNA is very similar to that of “Bacillus thermoglucosidasius”; however, the guanine-plus-cytosine (G+C) content is 8 mol% higher. The type strain is “Bacillus thermoantarcticus” (DSM 9572). Received : 3 February 1995/Accepted : 12 May 1995  相似文献   
85.
Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community''s bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.  相似文献   
86.
A checklist of identified oribatid mite taxa from riverine freshwater environments from six islands in Polynesia (New Caledonia, Tahiti, Moorea, Rurutu, Tubuai, Raiatea) is presented; 18 species, 16 genera and eight families were recorded. Trhypochthoniellus longisetus (Berlese, 1904) and Trimalaconothrus albulus Hammer, 1972 prevailed on distribution. Fortuynia smitisp. n. (Fortuyniidae) is described from New Caledonia. The new speciesis morphologically most similar to Fortuynia marina Hammen, 1960 from New Guinea, but it differs from the latter by the longer notogastral setae dm, lm, c2, p1, epimeral setae 3b and adanal setae ad1 and the presence of prodorsal lateral ridges.  相似文献   
87.
The α-carbonic anhydrase (CA, EC 4.2.1.1) from the extremophilic bacterium Sulfurihydrogenibium azorense (SazCA) was recently shown to be the fastest CA known. Here we investigated this enzyme for its activation with a series of amino acids and amines. The best SazCA activators were d-Phe, l-DOPA, l- and d-Trp, dopamine and serotonin, which showed activation constants in the range of 3–23 nM. l- and d-His, l-Phe, l-Tyr, 2-pyridyl-methylamine and L-adrenaline were also effective activators (KAs in the range of 62–90 nM), whereas d-Dopa, d-Tyr and several heterocyclic amines showed activity in the micromolar range. The good thermal stability, robustness, very high catalytic activity and propensity to be activated by simple amino acids and amines, make SazCA a very interesting candidate for biomimetic CO2 capture processes.  相似文献   
88.
Abstract: As cerebral neurons express the dopamine D1 receptor positively coupled with adenylyl cyclase, together with the D3 receptor, we have investigated in a heterologous cell expression system the relationships of cyclic AMP with D3 receptor signaling pathways. In NG108-15 cells transfected with the human D3 receptor cDNA, dopamine, quinpirole, and other dopamine receptor agonists inhibited cyclic AMP accumulation induced by forskolin. Quinpirole also increased mitogenesis, assessed by measuring [3H]thymidine incorporation. This effect was blocked partially by genistein, a tyrosine kinase inhibitor. Forskolin enhanced by 50–75% the quinpirole-induced [3H]thymidine incorporation. This effect was maximal with 100 n M forskolin, occurred after 6–16 h, was reproduced by cyclic AMP-permeable analogues, and was blocked by a protein kinase A inhibitor. Forskolin increased D3 receptor expression up to 135%, but only after 16 h and at concentrations of >1 µ M . Thus, in this cell line, the D3 receptor uses two distinct signaling pathways: it efficiently inhibits adenylyl cyclase and induces mitogenesis, an effect possibly involving tyrosine phosphorylation. Activation of the cyclic AMP cascade potentiates the D3 receptor-mediated mitogenic response, through phosphorylation by a cyclic AMP-dependent kinase of a yet unidentified component. Hence, transduction of the D3 receptor can involve both opposite and synergistic interactions with cyclic AMP.  相似文献   
89.
Inter‐organ communication is essential for plants to coordinate development and acclimate to mechanical environmental fluctuations. The aim of this study was to investigate long‐distance signaling in trees. We compared on young poplars the short‐term effects of local flame wounding and of local stem bending for two distal responses: (1) stem primary growth and (2) the expression of mechanoresponsive genes in stem apices. We developed a non‐contact measurement method based on the analysis of apex images in order to measure the primary growth of poplars. The results showed a phased stem elongation with alternating nocturnal circumnutation phases and diurnal growth arrest phases in Populus tremula × alba clone INRA 717‐1B4. We applied real‐time polymerase chain reaction (RT‐PCR) amplifications in order to evaluate the PtaZFP2, PtaTCH2, PtaTCH4, PtaACS6 and PtaJAZ5 expressions. The flame wounding inhibited primary growth and triggered remote molecular responses. Flame wounding induced significant changes in stem elongation phases, coupled with inhibition of circumnutation. However, the circadian rhythm of phases remained unaltered and the treated plants were always phased with control plants during the days following the stress. For bent plants, the stimulated region of the stem showed an increased PtaJAZ5 expression, suggesting the jasmonates may be involved in local responses to bending. No significant remote responses to bending were observed.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号