全文获取类型
收费全文 | 4677篇 |
免费 | 431篇 |
国内免费 | 1篇 |
专业分类
5109篇 |
出版年
2023年 | 26篇 |
2022年 | 48篇 |
2021年 | 88篇 |
2020年 | 61篇 |
2019年 | 70篇 |
2018年 | 70篇 |
2017年 | 69篇 |
2016年 | 136篇 |
2015年 | 220篇 |
2014年 | 237篇 |
2013年 | 329篇 |
2012年 | 428篇 |
2011年 | 375篇 |
2010年 | 258篇 |
2009年 | 253篇 |
2008年 | 302篇 |
2007年 | 317篇 |
2006年 | 300篇 |
2005年 | 297篇 |
2004年 | 270篇 |
2003年 | 253篇 |
2002年 | 278篇 |
2001年 | 45篇 |
2000年 | 24篇 |
1999年 | 49篇 |
1998年 | 73篇 |
1997年 | 42篇 |
1996年 | 33篇 |
1995年 | 36篇 |
1994年 | 24篇 |
1993年 | 27篇 |
1992年 | 17篇 |
1991年 | 7篇 |
1990年 | 4篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1982年 | 2篇 |
1977年 | 2篇 |
1975年 | 2篇 |
1974年 | 5篇 |
1972年 | 3篇 |
1971年 | 5篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1965年 | 1篇 |
1923年 | 1篇 |
排序方式: 共有5109条查询结果,搜索用时 0 毫秒
991.
Nathalie Droin Jean-Baptiste Hendra Patrick Ducoroy Eric Solary 《Journal of Proteomics》2009,72(6):918
Human defensins, which are small cationic peptides produced by neutrophils and epithelial cells, form two genetically distinct alpha and beta subfamilies. They are involved in innate immunity through killing microbial pathogens or neutralizing bacterial toxins and in adaptive immunity by serving as chemoattractants and activators of immune cells. α-defensins are mainly packaged in neutrophil granules (HNP1, HNP2, HNP3) or secreted by intestinal Paneth cells (HD5, HD6), while β-defensins are expressed in mucosa and epithelial cells. Using surface enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) mass spectrometry (MS), α-defensins were found to be expressed in a variety of human tumours, either in tumour cells or at their surface. HNP1–3 peptides are also secreted and their accumulation in biological fluids was proposed as a tumour biomarker. Conversely, β-defensin-1 (HBD-1) is down-regulated in some tumour types in which it could behave as a tumour suppressor protein. Alpha-defensins promote tumour cell growth or, at higher concentration, provoke cell death. These peptides also inhibit angiogenesis, which, in addition to immunomodulation, indicates a complex role in tumour development. This review summarizes current knowledge of defensins to discuss their role in tumour growth, tumour monitoring and cancer treatment. 相似文献
992.
Bellincampi D Camardella L Delcour JA Desseaux V D'Ovidio R Durand A Elliot G Gebruers K Giovane A Juge N Sørensen JF Svensson B Vairo D 《Biochimica et biophysica acta》2004,1696(2):265-274
Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological applications. 相似文献
993.
Timing and abundance as key mechanisms affecting trophic interactions in variable environments 总被引:4,自引:0,他引:4
Joël M. Durant Dag Ø. Hjermann Tycho Anker-Nilssen Grégory Beaugrand Atle Mysterud Nathalie Pettorelli Nils Chr. Stenseth 《Ecology letters》2005,8(9):952-958
Climatic changes are disrupting otherwise tight trophic interactions between predator and prey. Most of the earlier studies have primarily focused on the temporal dimension of the relationship in the framework of the match–mismatch hypothesis. This hypothesis predicts that predator's recruitment will be high if the peak of the prey availability temporally matches the most energy‐demanding period of the predators breeding phenology. However, the match–mismatch hypothesis ignores the level of food abundance while this can compensate small mismatches. Using a novel time‐series model explicitly quantifying both the timing and the abundance component for trophic relationships, we here show that timing and abundance of food affect recruitment differently in a marine (cod/zooplankton), a marine–terrestrial (puffin/herring) and a terrestrial (sheep/vegetation) ecosystem. The quantification of the combined effect of abundance and timing of prey on predator dynamics enables us to come closer to the mechanisms by which environment variability may affect ecological systems. 相似文献
994.
P. J. Klasse Mette M. Rosenkilde Nathalie Signoret Annegret Pelchen-Matthews Thue W. Schwartz Mark Marsh 《Journal of virology》1999,73(9):7453-7466
Most human immunodeficiency virus (HIV) strains require both CD4 and a chemokine receptor for entry into a host cell. In order to analyze how the HIV-1 envelope glycoprotein interacts with these cellular molecules, we constructed single-molecule hybrids of CD4 and chemokine receptors and expressed these constructs in the mink cell line Mv-1-lu. The two N-terminal (2D) or all four (4D) extracellular domains of CD4 were linked to the N terminus of the chemokine receptor CXCR4. The CD4(2D)CXCR4 hybrid mediated infection by HIV-1(LAI) to nearly the same extent as the wild-type molecules, whereas CD4(4D)CXCR4 was less efficient. Recombinant SU(LAI) protein competed more efficiently with the CXCR4-specific monoclonal antibody 12G5 for binding to CD4(2D)CXCR4 than for binding to CD4(4D)CXCR4. Stromal cell-derived factor 1 (SDF-1) blocked HIV-1(LAI) infection of cells expressing CD4(2D)CXCR4 less efficiently than for cells expressing wild-type CXCR4 and CD4, whereas down-modulation of CXCR4 by SDF-1 was similar for hybrids and wild-type CXCR4. In contrast, the bicyclam AMD3100, a nonpeptide CXCR4 ligand that did not down-modulate the hybrids, blocked hybrid-mediated infection at least as potently as for wild-type CXCR4. Thus SDF-1, but not the smaller molecule AMD3100, may interfere at multiple points with the binding of the surface unit (SU)-CD4 complex to CXCR4, a mechanism that the covalent linkage of CD4 to CXCR4 impedes. Although the CD4-CXCR4 hybrids yielded enhanced SU interactions with the chemokine receptor moiety, this did not overcome the specific coreceptor requirement of different HIV-1 strains: the X4 virus HIV-1(LAI) and the X4R5 virus HIV-1(89. 6), unlike the R5 strain HIV-1(SF162), infected Mv-1-lu cells expressing the CD4(2D)CXCR4 hybrid, but none could use hybrids of CD4 and the chemokine receptor CCR2b, CCR5, or CXCR2. Thus single-molecule hybrid constructs that mimic receptor-coreceptor complexes can be used to dissect coreceptor function and its inhibition. 相似文献
995.
Eiko E. Kuramae Erik Verbruggen Remy Hillekens Mattias de Hollander Wilfred F. M. R?ling Marcel G. A. van der Heijden George A. Kowalchuk 《PloS one》2013,8(7)
We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age) in pots associated with four maize cultivars, including two genetically modified (GM) cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA). The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most “active” fungi (as recovered via RNA). Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production). Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time. 相似文献
996.
Christelle Dutilleul Iliana Ribeiro Nathalie Blanc Cynthia D. Nezames Xing Wang Deng Piotr Zglobicki Ana María Palacio Barrera Lucia Atehortùa Martine Courtois Valérie Labas Nathalie Giglioli‐Guivarc'h Eric Ducos 《Plant, cell & environment》2016,39(1):185-198
The tagging‐via‐substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide‐modified farnesyl moiety and captured thanks to biotin alkyne Click‐iT® chemistry with further streptavidin‐affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C‐terminal CaaX‐box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes. 相似文献
997.
Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism 总被引:1,自引:0,他引:1 下载免费PDF全文
Bacterial autotransporters are comprised of an N-terminal 'passenger domain' and a C-terminal beta barrel ('beta domain') that facilitates transport of the passenger domain across the outer membrane. Following translocation, the passenger domains of some autotransporters are cleaved by an unknown mechanism. Here we show that the passenger domain of the Escherichia coli O157:H7 autotransporter EspP is released in a novel autoproteolytic reaction. After purification, the uncleaved EspP precursor underwent proteolytic processing in vitro. An analysis of protein topology together with mutational studies strongly suggested that the reaction occurs inside the beta barrel and revealed that two conserved residues, an aspartate within the beta domain (Asp(1120)) and an asparagine (Asn(1023)) at the P1 position of the cleavage junction, are essential for passenger domain cleavage. Interestingly, these residues were also essential for the proteolytic processing of two distantly related autotransporters. The data strongly suggest that Asp(1120) and Asn(1023) form an unusual catalytic dyad that mediates self-cleavage through the cyclization of the asparagine. Remarkably, a very similar mechanism has been proposed for the maturation of eukaryotic viral capsids. 相似文献
998.
Nimra Khan Dylan Pelletier Thomas S. McAlear Nathalie Croteau Simon Veyron Andrew N. Bayne Corbin Black Muneyoshi Ichikawa Ahmad Abdelzaher Zaki Khalifa Sami Chaaban Igor Kurinov Gary Brouhard Susanne Bechstedt Khanh Huy Bui Jean-François Trempe 《Structure (London, England : 1993)》2021,29(6):572-586.e6
999.
1000.
Two lipoxygenase (LOX) genes (tomloxA and tomloxB) are expressed in ripening tomato fruit, and tomloxA is also expressed in germinating seedlings [12]. The 5'-upstream regions of these genes were isolated to study the regulatory elements involved in coordinating tomlox gene expression. Sequence analysis of the promoters did not reveal any previously characterized regulatory elements except for TATA and CAAT boxes. However, the sequence motif GATAcAnnAAtnTGATG was found in both promoters. Chimeric gene fusions of each tomlox promoter with the -glucuronidase reporter gene (gus) were introduced into tobacco and tomato plants via Agrobacterium-mediated transformation. GUS activity in tomloxA-gus plants during seed germination peaked at day 5 and was enhanced by methyl jasmonate (MeJa) treatment. No GUS activity was detected in tomloxB-gus seedlings. Neither wounding nor abscisic acid (ABA) treatment of transgenic seedlings modified the activity of either promoter. During fruit development, GUS expression in tomloxA-gus tobacco fruit increased 5 days after anthesis (DAA) and peaked at 20 DAA. In tomloxB-gus tobacco fruit, GUS activity increased at 10 DAA and peaked at 20 DAA. In transgenic tomato fruit, tomloxA-gus expression was localized to the outer pericarp during fruit ripening, while tomloxB-gus expression was localized in the outer pericarp and columella. These data demonstrate that the promoter regions used in these experiments contain cis-acting regulatory elements required for proper regulation of tomlox expression during development and for MeJa-responsiveness. 相似文献