首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5108篇
  免费   470篇
  国内免费   1篇
  5579篇
  2023年   21篇
  2022年   52篇
  2021年   93篇
  2020年   62篇
  2019年   70篇
  2018年   70篇
  2017年   71篇
  2016年   142篇
  2015年   237篇
  2014年   264篇
  2013年   353篇
  2012年   473篇
  2011年   415篇
  2010年   265篇
  2009年   259篇
  2008年   326篇
  2007年   332篇
  2006年   333篇
  2005年   316篇
  2004年   289篇
  2003年   270篇
  2002年   301篇
  2001年   63篇
  2000年   43篇
  1999年   57篇
  1998年   79篇
  1997年   45篇
  1996年   42篇
  1995年   41篇
  1994年   30篇
  1993年   32篇
  1992年   22篇
  1991年   8篇
  1990年   12篇
  1989年   7篇
  1988年   12篇
  1987年   6篇
  1986年   12篇
  1985年   5篇
  1984年   7篇
  1982年   4篇
  1981年   3篇
  1978年   5篇
  1977年   2篇
  1974年   6篇
  1972年   3篇
  1971年   5篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有5579条查询结果,搜索用时 15 毫秒
51.
52.
The genome of mitochondria encodes a small number of very hydrophobic polypeptides that are inserted into the inner membrane in a cotranslational reaction. The molecular process by which mitochondrial ribosomes are recruited to the membrane is poorly understood. Here, we show that the inner membrane protein Mba1 binds to the large subunit of mitochondrial ribosomes. It thereby cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. We propose that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane.  相似文献   
53.
Three major reservoirs (Marne, Seine and Aube), situated in the upstream basin of the river Seine represent a storage capacity of 800 106 m3. In order to quantify the possible role of these reservoirs as a sink or source of nutrients and organic matter for the river system, an input/output mass-balance of suspended matter, organic carbon, inorganic nitrogen forms, phosphorus and reactive silica was established, providing reliable estimates of their retention/elimination and export. The study was carried out over 3 years (1993, 1994 and 1995) in differing hydrological conditions. The retention times varied from 0.3 to 0.8 year, depending on the reservoir and the year, but was longer in 1993 that was a drier year than 1994 and 1995, hydrologically quite similar.Regarding retention (or elimination) and export, the behaviour of the three studied reservoirs was similar. A clear loss or retention of nitrogen, phosphorus and silica was observed in the reservoirs and represented about 40% of the incoming flux of nitrate, 50% of silica, and 60% of phosphate. The retention was lower for total phosphorus than for phosphate. The reservoirs are also sites of suspended matter deposition except during the decennial drawdown, when suspended matter is exported. For inorganic nitrogen, the average amount of nitrate retained in the Seine basin reservoirs upstream from Paris is 5000 tonnes y–1 that is almost equal to the estimated retention by deposition or denitrification in river channel sediments for the whole drainage network. The retention in the reservoirs represents about 12% of the total flux of nitrate at the outlet of the basin upstream from Paris, and 5% at the mouth of the Seine River.We also calculated inlake C, N, P, Si budgets on the basis of direct process measurements. Measurements of planktonic primary and bacterial activity production led to annual net production of 4200 and 580 tonnes of carbon, respectively. A reasonable value (450 tonnes of carbon) of grazing was calculated. Corresponding N, P, Si fluxes were drawn from appropriate C:N:P:Si ratios. Benthic fluxes were measured with bell jars. The retention of P and Si represents a small fraction of important internal fluxes of phytoplanktonic uptake and recycling, while inorganic nitrogen retention depends mostly on benthic denitrification. The behaviour of P and Si differs in that P is mainly recycled in the water column, while Si dissolution occurs at the sediment interface. Nitrogen is recycled in both the planktonic and the benthic phase.  相似文献   
54.
Toxoplasma gondii and mucosal immunity   总被引:34,自引:0,他引:34  
Toxoplasma gondii, an intracellular parasite infects the host through the oral route. Infection induces a cascade of immunological events that involve both the components of the innate and adaptative immune responses. Alteration of the homeostatic balance of infected intestine results in an acute inflammatory ileitis in certain strains of inbred mice. Both the infected enterocytes as well as the CD4 T cells from the lamina propria produce chemokines and cytokines that are necessary to clear the parasite whereas CD8 intraepithelial lymphocytes secrete transforming growth factor beta that reduces the inflammation. In this review, we describe the salient features of this complex network of interactions among the different components of the gut-associated lymphoid tissue cell population that are induced after oral infection with T. gondii.  相似文献   
55.
Climatic changes are disrupting otherwise tight trophic interactions between predator and prey. Most of the earlier studies have primarily focused on the temporal dimension of the relationship in the framework of the match–mismatch hypothesis. This hypothesis predicts that predator's recruitment will be high if the peak of the prey availability temporally matches the most energy‐demanding period of the predators breeding phenology. However, the match–mismatch hypothesis ignores the level of food abundance while this can compensate small mismatches. Using a novel time‐series model explicitly quantifying both the timing and the abundance component for trophic relationships, we here show that timing and abundance of food affect recruitment differently in a marine (cod/zooplankton), a marine–terrestrial (puffin/herring) and a terrestrial (sheep/vegetation) ecosystem. The quantification of the combined effect of abundance and timing of prey on predator dynamics enables us to come closer to the mechanisms by which environment variability may affect ecological systems.  相似文献   
56.
Gut microflora is now considered as a key organ involved in host energy homeostasis. Recent data suggest that the alterations of the gut bacteria ecosystem could contribute to the development of metabolic disorders such as type 2 diabetes and obesity. First, gut microflora may increase energy efficiency of non digested food via the fermentation, thus providing more energy to the host. Secondly, fatty acids flux and storage in the adipose tissue is under the control of the fasting-induced adipocyte factor FIAF, which expression depends on gut microflora. Third, high-fat diet feeding changes gut bacteria profile, leading to a drop in bifidobacteria content, which correlates with a higher LPS plasma levels, thereby participating to the onset of inflammation, insulin resistance and type 2 diabetes associated with obesity. Changing gut microflora composition could be a useful tool to prevent or to treat high-fat/low fibres diet-induced metabolic syndrome. double dagger.  相似文献   
57.
Effective small interfering RNA (siRNA)-mediated therapeutics require the siRNA to be delivered into the cellular RNA-induced silencing complex (RISC). Quantitative information of this essential delivery step is currently inferred from the efficacy of gene silencing and siRNA uptake in the tissue. Here we report an approach to directly quantify siRNA in the RISC in rodents and monkey. This is achieved by specific immunoprecipitation of the RISC from tissue lysates and quantification of small RNAs in the immunoprecipitates by stem-loop PCR. The method, expected to be independent of delivery vehicle and target, is label-free, and the throughput is acceptable for preclinical animal studies. We characterized a lipid-formulated siRNA by integrating these approaches and obtained a quantitative perspective on siRNA tissue accumulation, RISC loading, and gene silencing. The described methodologies have utility for the study of silencing mechanism, the development of siRNA therapeutics, and clinical trial design.  相似文献   
58.
In order to analyze dexamethasone effects on peripheral blood lymphocyte proliferation, we defined various experimental conditions: dexamethasone introduced (i) at the time of phytohemagglutinin stimulation, (ii) 48 h after the beginning of phytohemagglutinin stimulation, and (iii) on unstimulated lymphocytes. In stimulated lymphocytes, we observed an early G1 accumulation (P< 0.005), a delayed increase in the duration of S-phase (P< 0.03), and a consequent increase in cell-cycle duration. The expression of several cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs) was modified. Cyclin D3, CDK4, and CDK6 involved in G1-phase control were significantly decreased under dexamethasone treatment whatever the level of stimulation of lymphocytes (stimulated or unstimulated PBL). Cyclin E and CDK2, acting in G1/S-phase transition and S-phase regulation, decreased in stimulated lymphocytes before any modification of S-phase (P< 0.002). The expression of CKIs, mainly of p27Kip1, appeared to vary with the degree of cell stimulation: a decrease was observed on treated unstimulated lymphocytes, while p27Kip1increased in dexamethasone-treated cells during stimulation. Our results indicate sequential modifications of the cell-cycle regulation by dexamethasone starting with an action on G1 followed by S-phase control modifications. The protein analysis pinpoints the major complexes concerned: CDK4 and CDK6/cyclin D are mainly involved in G1-phase modifications, while CDK2 and its partner, cyclin E, might be specifically involved in the lengthening of S-phase. The variations observed for p27Kip1might amplify the functional effects of dexamethasone on kinasic complexes.  相似文献   
59.
Two ecologically and economically important, and threatened Dipterocarp trees Sal (Shorea robusta) and Garjan (Dipterocarpus turbinatus) form mono‐specific canopies in dry deciduous, moist deciduous, evergreen, and semievergreen forests across South Asia and continental parts of Southeast Asia. They provide valuable timber and play an important role in the economy of many Asian countries. However, both Dipterocarp trees are threatened by continuing forest clearing, habitat alteration, and global climate change. While climatic regimes in the Asian tropics are changing, research on climate change‐driven shifts in the distribution of tropical Asian trees is limited. We applied a bioclimatic modeling approach to these two Dipterocarp trees Sal and Garjan. We used presence‐only records for the tree species, five bioclimatic variables, and selected two climatic scenarios (RCP4.5: an optimistic scenario and RCP8.5: a pessimistic scenario) and three global climate models (GCMs) to encompass the full range of variation in the models. We modeled climate space suitability for both species, projected to 2070, using a climate envelope modeling tool “MaxEnt” (the maximum entropy algorithm). Annual precipitation was the key bioclimatic variable in all GCMs for explaining the current and future distributions of Sal and Garjan (Sal: 49.97 ± 1.33; Garjan: 37.63 ± 1.19). Our models predict that suitable climate space for Sal will decline by 24% and 34% (the mean of the three GCMs) by 2070 under RCP4.5 and RCP8.5, respectively. In contrast, the consequences of imminent climate change appear less severe for Garjan, with a decline of 17% and 27% under RCP4.5 and RCP8.5, respectively. The findings of this study can be used to set conservation guidelines for Sal and Garjan by identifying vulnerable habitats in the region. In addition, the natural habitats of Sal and Garjan can be categorized as low to high risk under changing climates where artificial regeneration should be undertaken for forest restoration.  相似文献   
60.
Medicago truncatula is used as a model plant for exploring the genetic and molecular determinants of nitrogen (N) nutrition in legumes. In this study, our aim was to detect quantitative trait loci (QTL) controlling plant N nutrition using a simple framework of carbon/N plant functioning stemming from crop physiology. This framework was based on efficiency variables which delineated the plant’s efficiency to take up and process carbon and N resources. A recombinant inbred line population (LR4) was grown in a glasshouse experiment under two contrasting nitrate concentrations. At low nitrate, symbiotic N2 fixation was the main N source for plant growth and a QTL with a large effect located on linkage group (LG) 8 affected all the traits. Significantly, efficiency variables were necessary both to precisely localize a second QTL on LG5 and to detect a third QTL involved in epistatic interactions on LG2. At high nitrate, nitrate assimilation was the main N source and a larger number of QTL with weaker effects were identified compared to low nitrate. Only two QTL were common to both nitrate treatments: a QTL of belowground biomass located at the bottom of LG3 and another one on LG6 related to three different variables (leaf area, specific N uptake and aboveground:belowground biomass ratio). Possible functions of several candidate genes underlying QTL of efficiency variables could be proposed. Altogether, our results provided new insights into the genetic control of N nutrition in M. truncatula. For instance, a novel result for M. truncatula was identification of two epistatic interactions in controlling plant N2 fixation. As such this study showed the value of a simple conceptual framework based on efficiency variables for studying genetic determinants of complex traits and particularly epistatic interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号