首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4543篇
  免费   414篇
  国内免费   1篇
  4958篇
  2023年   21篇
  2022年   47篇
  2021年   83篇
  2020年   58篇
  2019年   66篇
  2018年   66篇
  2017年   64篇
  2016年   132篇
  2015年   214篇
  2014年   231篇
  2013年   317篇
  2012年   418篇
  2011年   367篇
  2010年   247篇
  2009年   241篇
  2008年   299篇
  2007年   308篇
  2006年   297篇
  2005年   290篇
  2004年   270篇
  2003年   251篇
  2002年   276篇
  2001年   42篇
  2000年   23篇
  1999年   45篇
  1998年   72篇
  1997年   39篇
  1996年   32篇
  1995年   36篇
  1994年   23篇
  1993年   25篇
  1992年   16篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   4篇
  1972年   3篇
  1971年   5篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1965年   1篇
  1923年   1篇
排序方式: 共有4958条查询结果,搜索用时 15 毫秒
101.
Trypanosomatids contain peroxisome-like organelles called glycosomes. Peroxisomal biogenesis involves a cytosolic receptor, PEX5, which, after its insertion into the organellar membrane, delivers proteins to the matrix. In yeasts and mammalian cells, transient PEX5 monoubiquitination at the membrane serves as the signal for its retrieval from the organelle for re-use. When its recycling is impaired, PEX5 is polyubiquitinated for proteasomal degradation. Stably monoubiquitinated TbPEX5 was detected in cytosolic fractions of Trypanosoma brucei, indicative for its role as physiological intermediate in receptor recycling. This modification's resistance to dithiothreitol suggests ubiquitin conjugation of a lysine residue. T. brucei PEX4, the functional homologue of the ubiquitin-conjugating (UBC) enzyme responsible for PEX5 monoubiquitination in yeast, was identified. It is associated with the cytosolic face of the glycosomal membrane, probably anchored by an identified putative TbPEX22. The involvement of TbPEX4 in TbPEX5 ubiquitination was demonstrated using procyclic ?PEX4 trypanosomes. Surprisingly, glycosomal matrix protein import was only mildly affected in this mutant. Since other UBC homologues were upregulated, it might be possible that these have partially rescued PEX4's function in PEX5 ubiquitination. In addition, the altered expression of UBCs, notably of candidates involved in cell-cycle control, could be responsible for observed morphological and motility defects of the ?PEX4 mutant.  相似文献   
102.
Rioux G  Babin C  Majeau N  Leclerc D 《PloS one》2012,7(2):e31925
Papaya mosaic virus has been shown to be an efficient adjuvant and vaccine platform in the design and improvement of innovative flu vaccines. So far, all fusions based on the PapMV platform have been located at the C-terminus of the PapMV coat protein. Considering that some epitopes might interfere with the self-assembly of PapMV CP when fused at the C-terminus, we evaluated other possible sites of fusion using the influenza HA11 peptide antigen. Two out of the six new fusion sites tested led to the production of recombinant proteins capable of self assembly into PapMV nanoparticles; the two functional sites are located after amino acids 12 and 187. Immunoprecipitation of each of the successful fusions demonstrated that the HA11 epitope was located at the surface of the nanoparticles. The stability and immunogenicity of the PapMV-HA11 nanoparticles were evaluated, and we could show that there is a direct correlation between the stability of the nanoparticles at 37°C (mammalian body temperature) and the ability of the nanoparticles to trigger an efficient immune response directed towards the HA11 epitope. This strong correlation between nanoparticle stability and immunogenicity in animals suggests that the stability of any nanoparticle harbouring the fusion of a new peptide should be an important criterion in the design of a new vaccine.  相似文献   
103.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   
104.
Recovery of human cytomegalovirus (HCMV)-specific T immunity is critical for protection against HCMV disease in the early phase after allogeneic stem cell transplantation (SCT). Using an enzyme-linked immunospot assay with overlapping 15-mer peptides spanning pp65 and immediate-early 1 HCMV proteins, we investigated which HCMV-specific CD8+ gamma interferon-positive (IFN-γ+) T-cell responses against pp65 and IE-1 were associated with control of HCMV replication in 48 recipients of unmanipulated HLA-matched allografts at 3 months (M3) and 6 months (M6) after SCT and in 23 donors. At M3 after SCT, the magnitude of the pp65-specific IFN-γ-producing CD8+ T-cell response was greater in recipients than in donors, regardless of HCMV status. In contrast, expansion of IE-1-specific CD8+ T cells at M3 was associated with protection against HCMV, and no patient with this expansion had HCMV replication at M3. At M6, the number of HCMV-specific CD8+ T cells against both pp65 and IE-1 had expanded in all recipients, regardless of their previous levels of HCMV replication. The recipients' HCMV-specific CD8+ T cells already detectable in related donors were predominantly targeting pp65. In contrast, in 40% of the cases, the HCMV-specific CD8+ T cells in recipients involved new CD8+ T-cell specificities undetectable in their related donors and preferentially targeting IE-1. Taken together, these results showed that the delay in reconstituting IE-1-specific CD8+ T cells is correlated with the lack of protection against HCMV in the first 3 months after SCT. They also show that IE-1 is a major antigenic determinant of the early restoration of protective immunity to HCMV after SCT.  相似文献   
105.
The protozoan parasite Toxoplasma gondii is equipped with a sophisticated secretory apparatus, including three distinct exocytic organelles, named micronemes, rhoptries, and dense granules. We have dissected the requirements for targeting the microneme protein MIC3, a key component of T. gondii infection. We have shown that MIC3 is processed in a post-Golgi compartment and that the MIC3 propeptide and epidermal growth factor (EGF) modules contain microneme-targeting information. The minimal requirement for microneme delivery is defined by the propeptide plus any one of the three EGF domains. We have demonstrated that the cleavage of the propeptide, the dimerization of MIC3, and the chitin binding-like sequence, which are crucial for host cell binding and virulence, are dispensable for proper targeting. Finally, we have shown that part of MIC3 is withheld in the secretory pathway in a cell cycle-dependent manner.  相似文献   
106.
107.

Background

Cryptococcus gattii is a basidiomycetous yeast that causes life-threatening disease in humans and animals. Within C. gattii, four molecular types are recognized (VGI to VGIV). The Australian VGII population has been in the spotlight since 2005, when it was suggested as the possible origin for the ongoing outbreak at Vancouver Island (British Columbia, Canada), with same-sex mating being suggested as the driving force behind the emergence of this outbreak, and is nowadays hypothesized as a widespread phenomenon in C. gattii. However, an in-depth characterization of the Australian VGII population is still lacking. The present work aimed to define the genetic variability within the Australian VGII population and determine processes shaping its population structure.

Methodology/Principal Findings

A total of 54 clinical, veterinary and environmental VGII isolates from different parts of the Australian continent were studied. To place the Australian population in a global context, 17 isolates from North America, Europe, Asia and South America were included. Genetic variability was assessed using the newly adopted international consensus multi-locus sequence typing (MLST) scheme, including seven genetic loci: CAP59, GPD1, LAC1, PLB1, SOD1, URA5 and IGS1. Despite the overall clonality observed, the presence of MAT a VGII isolates in Australia was demonstrated for the first time in association with recombination in MATα-MAT a populations. Our results also support the hypothesis of a “smouldering” outbreak throughout the Australian continent, involving a limited number of VGII genotypes, which is possibly caused by a founder effect followed by a clonal expansion.

Conclusions/Significance

The detection of sexual recombination in MATα-MAT a population in Australia is in accordance with the natural life cycle of C. gattii involving opposite mating types and presents an alternative to the same-sex mating strategy suggested elsewhere. The potential for an Australian wide outbreak highlights the crucial issue to develop active surveillance procedures.  相似文献   
108.
109.
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.  相似文献   
110.
Rho GTPases regulate multiple cellular processes affecting both cell proliferation and cytoskeletal dynamics. Their cycling between inactive GDP- and active GTP-bound states is tightly regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We have previously identified CdGAP (for Cdc42 GTPase-activating protein) as a specific GAP for Rac1 and Cdc42. CdGAP consists of an N-terminal RhoGAP domain and a C-terminal proline-rich region. In addition, CdGAP is a member of the impressively large number of mammalian RhoGAP proteins that is well conserved among both vertebrates and invertebrates. In mice, we find two predominant isoforms of CdGAP differentially expressed in specific tissues. We report here that CdGAP is highly phosphorylated in vivo on serine and threonine residues. We find that CdGAP is phosphorylated downstream of the MEK-extracellular signal-regulated kinase (ERK) pathway in response to serum or platelet-derived growth factor stimulation. Furthermore, CdGAP interacts with and is phosphorylated by ERK-1 and RSK-1 in vitro. A putative DEF (docking for ERK FXFP) domain located in the proline-rich region of CdGAP is required for efficient binding and phosphorylation by ERK1/2. We identify Thr776 as an in vivo target site of ERK1/2 and as an important regulatory site of CdGAP activity. Together, these data suggest that CdGAP is a novel substrate of ERK1/2 and mediates cross talk between the Ras/mitogen-activated protein kinase pathway and regulation of Rac1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号