首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4762篇
  免费   430篇
  国内免费   1篇
  2023年   21篇
  2022年   48篇
  2021年   88篇
  2020年   61篇
  2019年   67篇
  2018年   70篇
  2017年   65篇
  2016年   138篇
  2015年   222篇
  2014年   245篇
  2013年   321篇
  2012年   437篇
  2011年   385篇
  2010年   251篇
  2009年   251篇
  2008年   310篇
  2007年   319篇
  2006年   301篇
  2005年   299篇
  2004年   274篇
  2003年   253篇
  2002年   281篇
  2001年   44篇
  2000年   28篇
  1999年   50篇
  1998年   74篇
  1997年   41篇
  1996年   33篇
  1995年   36篇
  1994年   24篇
  1993年   29篇
  1992年   19篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1972年   6篇
  1971年   5篇
  1970年   3篇
  1969年   4篇
  1968年   3篇
  1967年   7篇
排序方式: 共有5193条查询结果,搜索用时 31 毫秒
101.
One of the major early steps of repair is the recruitment of repair proteins at the damage site, and this is coordinated by a cascade of modifications controlled by phosphatidylinositol 3-kinase-related kinases and/or poly (ADP-ribose) polymerase (PARP). We used short interfering DNA molecules mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) to promote DNA-dependent protein kinase (DNA-PK) and PARP activation. Dbait bound and induced both PARP and DNA-PK activities, whereas Pbait acts only on PARP. Therefore, comparative study of the two molecules allows analysis of the respective roles of the two signaling pathways: both recruit proteins involved in single-strand break repair (PARP, XRCC1 and PCNA) and prevent their recruitment at chromosomal damage. Dbait, but not Pbait, also inhibits recruitment of proteins involved in double-strand break repair (53BP1, NBS1, RAD51 and DNA-PK). By these ways, Pbait and Dbait disorganize DNA repair, thereby sensitizing cells to various treatments. Single-strand breaks repair inhibition depends on direct trapping of the main proteins on both molecules. Double-strand breaks repair inhibition may be indirect, resulting from the phosphorylation of double-strand breaks repair proteins and chromatin targets by activated DNA-PK. The DNA repair inhibition by both molecules is confirmed by their synthetic lethality with BRCA mutations.  相似文献   
102.
The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive. Here, we demonstrate that Trio is phosphorylated by Src family kinases in the embryonic rat cortex in response to netrin-1. In vitro, Trio was predominantly phosphorylated at Tyr2622 by the Src kinase Fyn. Though the phospho-null mutant TrioY2622F retained GEF activity toward Rac1, its expression impaired netrin-1-induced Rac1 activation and DCC-mediated neurite outgrowth in N1E-115 neuroblastoma cells. TrioY2622F impaired netrin-1-induced axonal extension in cultured cortical neurons and was unable to colocalize with DCC in growth cones, in contrast to wild-type Trio. Furthermore, depletion of Trio in cortical neurons reduced the level of cell surface DCC in growth cones, which could be restored by expression of wild-type Trio but not TrioY2622F. Together, these findings demonstrate that TrioY2622 phosphorylation is essential for the regulation of the DCC/Trio signaling complex in cortical neurons during netrin-1-mediated axon outgrowth.  相似文献   
103.
Over the last decades, political, economic and environmental pressures have encouraged changes from swidden to more intensive agricultural practices, resulting in the hypothesis that swidden cultivation systems are disappearing. In Calakmul, southeastern Mexico, communities decreased the area under milpa, the traditional maize swidden system, but a collapse did not occur. To document and explain the persistence of swidden we employ a variety of data: (1) 59 standardized household surveys from 2003 and 2010 in five villages, (2) in-depth interviews in one village, and (3) coupled human–environmental timelines in this same village. Droughts, hurricanes, and remittances were important drivers of decreases in milpa cultivation. Market crop profitability and conservation programs were also reported to affect the area under milpa. Off-farm employment and governmental transfers have tended to stabilize household economies and decrease dependency on agricultural production, but have also allowed households to maintain their milpas for subsistence and cultural reproduction. Findings in Calakmul point to the need to consider swidden as an evolving and active response to changing policy, economic, and environmental conditions.  相似文献   
104.

Although a total ban on the use of TBT coatings is not expected in the short term, there is a growing need for environmentally safe antifouling systems. To assist in the rapid screening of a large number of potential antifouling substances, a method that is simple, efficient and inexpensive is required. The production of byssus threads by the blue mussel, Mytilus edulis, has often been studied for testing the antifouling efficacy of various compounds. The present study reports a new antifouling assay based on the inhibition of purified M. edulis phenoloxidase activity. The method has the advantage of being specific, reliable, sensitive and rapid.  相似文献   
105.
Hyperhomocysteinemia due to cystathionine beta synthase (CBS) deficiency is associated with diverse brain disease. Whereas the biological actions linking hyperhomocysteinemia to the cognitive dysfunction are not well understood, we tried to establish relationships between hyperhomocysteinemia and alterations of signaling pathways. In the brain of CBS-deficient mice, a murine model of hyperhomocysteinemia, we previously found an activation of extracellular signal-regulated kinase (ERK) pathway and an increase of Dyrk1A, a serine/threonine kinase involved in diverse functions ranging from development and growth to apoptosis. We then investigated the relationship between Dyrk1A and the signaling pathways initiated by receptor tyrosine kinases (RTK), the ERK and PI3K/Akt pathways. We found a significant increase of phospho-ERK, phospho-MEK, and phospho-Akt in the brain of CBS-deficient and Dyrk1a-overexpressing mice. This increase was abolished when CBS-deficient and Dyrk1A-transgenic mice were treated with harmine, an inhibitor of Dyrk1A kinase activity, which emphasizes the role of Dyrk1A activity on ERK and Akt activation. Sprouty 2 protein level, a negative feedback loop modulator that limits the intensity and duration of RTK activation, is decreased in the brain of CBS-deficient mice, but not in the brain of Dyrk1A transgenic mice. Furthermore, a reduced Dyrk1A and Grb2 binding on sprouty 2 and an increased interaction of Dyrk1A with Grb2 were found in the brain of Dyrk1A transgenic mice. The consequence of Dyrk1A overexpression on RTK activation seems to be a decreased interaction of sprouty 2/Grb2. These observations demonstrate ERK and Akt activation induced by Dyrk1A in the brain of hyperhomocysteinemic mice and open new perspectives to understand the basis of the cognitive defects in hyperhomocysteinemia.  相似文献   
106.
BMP-9 is a potent osteogenic factor; however, its effects on osteoclasts, the bone-resorbing cells, remain unknown. To determine the effects of BMP-9 on osteoclast formation, activity and survival, we used human cord blood monocytes as osteoclast precursors that form multinucleated osteoclasts in the presence of RANKL and M-CSF in long-term cultures. BMP-9 did not affect osteoclast formation, but adding BMP-9 at the end of the culture period significantly increased bone resorption compared to untreated cultures, and reduced both the rate of apoptosis and caspase-9 activity. BMP-9 also significantly downregulated the expression of pro-apoptotic Bid, but only after RANKL and M-CSF, which are both osteoclast survival factors, had been eliminated from the culture medium. To investigate the mechanisms involved in the effects of BMP-9, we first showed that osteoclasts expressed some BMP receptors, including BMPR-IA, BMPR-IB, ALK1, and BMPR-II. We also found that BMP-9 was able to induce the phosphorylation of Smad-1/5/8 and ERK 1/2 proteins, but did not induce p38 phosphorylation. Finally, knocking down the BMPR-II receptor abrogated the BMP-9-induced ERK-signaling, as well as the increase in bone resorption. In conclusion, these results show for the first time that BMP-9 directly affects human osteoclasts, enhancing bone resorption and protecting osteoclasts against apoptosis. BMP-9 signaling in human osteoclasts involves the canonical Smad-1/5/8 pathway, and the ERK pathway.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号