首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4746篇
  免费   429篇
  国内免费   1篇
  5176篇
  2023年   21篇
  2022年   47篇
  2021年   86篇
  2020年   59篇
  2019年   67篇
  2018年   66篇
  2017年   64篇
  2016年   133篇
  2015年   221篇
  2014年   236篇
  2013年   325篇
  2012年   434篇
  2011年   374篇
  2010年   252篇
  2009年   243篇
  2008年   304篇
  2007年   315篇
  2006年   309篇
  2005年   299篇
  2004年   280篇
  2003年   259篇
  2002年   279篇
  2001年   47篇
  2000年   30篇
  1999年   54篇
  1998年   77篇
  1997年   39篇
  1996年   36篇
  1995年   38篇
  1994年   28篇
  1993年   27篇
  1992年   20篇
  1991年   10篇
  1990年   12篇
  1989年   7篇
  1988年   11篇
  1986年   8篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1980年   3篇
  1979年   4篇
  1977年   5篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1971年   5篇
  1965年   2篇
排序方式: 共有5176条查询结果,搜索用时 15 毫秒
51.
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.  相似文献   
52.

Background

Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer.

Methods and Findings

By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis.

Conclusions

Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer.  相似文献   
53.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   
54.
A rapid gas–liquid chromatographic assay is developed for the quantification of methadone (Mtd) and its major metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), in biological fluids of opiate addicts. After alkaline extraction from samples with lidocaine hydrochloride as internal standard, Mtd and EDDP are separated on SP-2250 column at 220°C and detected with a thermionic detector. The chromatographic time is about 6 min. The relative standard deviations (R.S.D.) of Mtd and EDDP standards are between 1.5 and 5.5%. Most drugs of abuse (morphine, codeine, narcotine, cocaine, benzoylecgonine, cocaethylene, dextropropoxyphene etc) are shown not to interfere with this technique. The method has been applied to study the levels of Mtd and EDDP metabolite in serum, saliva and urine of patients under maintenance treatment for opiate dependence. EDDP levels were found higher than those of Mtd in urine samples from four treated patients, but lower in serum and undetectable in saliva. However, Mtd concentrations were higher in saliva than in serum.  相似文献   
55.
Stromal cell-derived factor-1 (SDF-1)/CXCL12, the ligand for CXCR4, induces signal transduction. We previously showed that CXCL12 binds to high- and low-affinity sites expressed by primary cells and cell lines, and forms complexes with CXCR4 as expected and also with a proteoglycan, syndecan-4, but does not form complexes with syndecan-1, syndecan-2, CD44 or beta-glycan. We also demonstrated the occurrence of a CXCL12-independent heteromeric complex between CXCR4 and syndecan-4. However, our data ruled out the glycosaminoglycan-dependent binding of CXCL12 to HeLa cells facilitating the binding of this chemokine to CXCR4. Here, we demonstrate that CXCL12 directly binds to syndecan-4 in a glycosaminoglycan-dependent manner. We show that upon stimulation of HeLa cells by CXCL12, CXCR4 becomes tyrosine phosphorylated as expected, while syndecan-4 (but not syndecan-1, syndecan-2 or beta-glycan) also undergoes such tyrosine phosphorylation. Moreover, tyrosine-phosphorylated syndecan-4 from CXCL12-stimulated HeLa cells physically coassociates with tyrosine phosphorylated CXCR4. Pretreatment of the cells with heparitinases I and III prevented the tyrosine phosphorylation of syndecan-4, which suggests that the heparan sulfate-dependent binding of SDF-1 to this proteoglycan is involved. Finally, by reducing syndecan-4 expression using RNA interference or by pretreating the cells with heparitinase I and III mixture, we suggest the involvement of syndecan-4 and heparan sulfate in p44/p42 mitogen-activated protein kinase and Jun N-terminal/stress-activated protein kinase activation by action of CXCL12 on HeLa cells. However, these treatments did not modify the calcium mobilization induced by CXCL12 in these cells. Therefore, syndecan-4 behaves as a CXCL12 receptor, selectively involved in some transduction pathways induced by SDF-1, and heparan sulfate plays a role in these events.  相似文献   
56.
Dissolved CH4 concentrations in the Belgian coastal zone (North Sea) ranged between 670 nmol l?1 nearshore and 4 nmol l?1 offshore. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In nearshore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM-rich sediments. In offshore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the chlorophyll-a spring peak, suggesting that in these OM-poor sediments, methanogenesis depended on freshly produced OM delivery. This does not exclude the possibility that some CH4 might originate from dimethylsulfide (DMS) or dimethylsulfoniopropionate (DMSP) or methylphosphonate transformations in the most offshore stations. Yet, the average seasonal CH4 cycle was unrelated to those of DMS(P), very abundant during the Phaeocystis bloom. The annual average CH4 emission was 126 mmol m?2 y?1 in the most nearshore stations (~4 km from the coast) and 28 mmol m?2 y?1 in the most offshore stations (~23 km from the coast), 1260–280 times higher than the open ocean average value (0.1 mmol m?2 y?1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area.  相似文献   
57.
The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for 'proline racemase' virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not 'one way' directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on constraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host.  相似文献   
58.
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.  相似文献   
59.
60.
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance‐breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof‐of‐concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans‐species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad‐spectrum and high durability resistance using recent genome editing techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号