首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4549篇
  免费   417篇
  国内免费   1篇
  2023年   20篇
  2022年   46篇
  2021年   83篇
  2020年   58篇
  2019年   66篇
  2018年   66篇
  2017年   64篇
  2016年   132篇
  2015年   214篇
  2014年   231篇
  2013年   318篇
  2012年   419篇
  2011年   368篇
  2010年   247篇
  2009年   241篇
  2008年   299篇
  2007年   308篇
  2006年   299篇
  2005年   291篇
  2004年   272篇
  2003年   251篇
  2002年   276篇
  2001年   42篇
  2000年   23篇
  1999年   45篇
  1998年   72篇
  1997年   39篇
  1996年   32篇
  1995年   36篇
  1994年   23篇
  1993年   25篇
  1992年   16篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   4篇
  1972年   3篇
  1971年   5篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1965年   1篇
  1923年   1篇
排序方式: 共有4967条查询结果,搜索用时 274 毫秒
971.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   

972.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   
973.
974.
Gut microflora is now considered as a key organ involved in host energy homeostasis. Recent data suggest that the alterations of the gut bacteria ecosystem could contribute to the development of metabolic disorders such as type 2 diabetes and obesity. First, gut microflora may increase energy efficiency of non digested food via the fermentation, thus providing more energy to the host. Secondly, fatty acids flux and storage in the adipose tissue is under the control of the fasting-induced adipocyte factor FIAF, which expression depends on gut microflora. Third, high-fat diet feeding changes gut bacteria profile, leading to a drop in bifidobacteria content, which correlates with a higher LPS plasma levels, thereby participating to the onset of inflammation, insulin resistance and type 2 diabetes associated with obesity. Changing gut microflora composition could be a useful tool to prevent or to treat high-fat/low fibres diet-induced metabolic syndrome. double dagger.  相似文献   
975.
This phylogenetic study of central and peripheral nervous system myelin proteins demonstrates that important changes occur in the composition of certain myelin proteins during evolution. Only two components, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) are present in all Gnathostomata representatives investigated. While MBP components varied considerably even among the representatives of a given order, the apparent molecular weight of MAG showed little variation indicating that the conservation of the molecular structure could be important for the function of MAG in glia axon interactions.  相似文献   
976.
Some properties of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) from two psychrophilic Chloromonas species have been investigated in relation to their adaptation to cold environments. Contrary to the situation usually encountered with psychrophilic enzymes, the carboxylase activity of both purified "cold" RUBISCO enzymes was lower at low temperatures than that found with the enzyme of the mesophilic alga Chlamydomonas reinhardtii Dangeard. Moreover, the apparent optimal temperature for RUBISCO carboxylase activity was similar for psychrophilic and mesophilic enzymes. Psychrophilic RUBISCOs, however, showed a greater thermosensitivity than the C. reinhardtii enzyme. Genes encoding small and large subunits of RUBISCO from one psychrophilic isolate were sequenced. Comparison of the deduced amino acid sequences to those of higher plants and green algae revealed the substitution of a very highly conserved residue (cysteine247 → serine in the large subunit) that could be responsible, at least in part, for the increased thermosensitivity of the "cold" enzyme. Interestingly, the relative amount of RUBISCO subunits found in the psychrophilic isolates was about twice as high as the amount observed in C. reinhardtii and five other mesophilic algae. The high production of a key enzyme to counterbalance its poor catalytic efficiency at low temperature could constitute a novel type of adaptive mechanism to cold environments.  相似文献   
977.
A recombinant dog gastric lipase with therapeutic potential for the treatment of exocrine pancreatic insufficiency was expressed in transgenic tobacco plants. We targeted the protein using two different signal sequences for either vacuolar retention or secretion. In both cases, an active glycosylated recombinant protein was obtained. The recombinant enzymes and the native enzyme displayed similar properties including acid resistance and acidic optimum pH. The proteolytic maturation and the specific activity of the recombinant proteins, however, were found to be dependent on subcellular compartmentalization. Expression levels of recombinant dog gastric lipase were about 5% and 7% of acid extractable plant proteins for vacuolar retention and secretion respectively. This expression system already has allowed the production of tens of grams of purified lipase through open-field culture of transgenic tobacco plants.  相似文献   
978.
Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1β secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1β production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号