首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1412篇
  免费   80篇
  国内免费   1篇
  2023年   7篇
  2022年   21篇
  2021年   28篇
  2020年   25篇
  2019年   22篇
  2018年   24篇
  2017年   23篇
  2016年   35篇
  2015年   56篇
  2014年   59篇
  2013年   104篇
  2012年   108篇
  2011年   78篇
  2010年   49篇
  2009年   47篇
  2008年   67篇
  2007年   54篇
  2006年   61篇
  2005年   59篇
  2004年   49篇
  2003年   43篇
  2002年   49篇
  2001年   25篇
  2000年   32篇
  1999年   21篇
  1998年   17篇
  1997年   10篇
  1996年   14篇
  1995年   11篇
  1994年   8篇
  1992年   23篇
  1991年   19篇
  1990年   10篇
  1989年   13篇
  1988年   11篇
  1987年   22篇
  1986年   16篇
  1985年   21篇
  1984年   17篇
  1983年   14篇
  1982年   8篇
  1981年   8篇
  1980年   15篇
  1979年   11篇
  1978年   10篇
  1976年   8篇
  1974年   8篇
  1971年   7篇
  1969年   5篇
  1967年   5篇
排序方式: 共有1493条查询结果,搜索用时 46 毫秒
21.
A detailed study of chromosome breakage induced by three alkane sulfonates, which differ in chemical structure, functionality and reaction mechanism has been made in barley under different treatment conditions of temperature and hydrogen ion concentration. This study has indicated that, (i) the frequency and the types of chromosome breakage, at mitosis and meiosis, indicate certain qualitative and quantitative differences between the biological action of these three chemicals, (ii) the temperature of the treatment solution profoundly influences the frequency of chromosome breakage — a high frequency of breakage is observed at higher temperature, (iii) the effect of pH, though not very significant, is evident from the production of appreciably low frequency of breakage at alkaline pH for a given dose of chemical, (iv) by appropriate manipulation of treatment conditions, increase or decrease in the frequency of chromosome breakage can be accomplished to a considerable extent, (v) the qualitative and quantitative differences observed with respect to chromosoma breakage reflect the differences in the mode of biological action of these agents.  相似文献   
22.
23.
1. Glycoproteins were isolated from the plasma of sheep, goat, cow, buffalo and monkey. They were homogeneous by electrophoresis; on ultracentrifugation, a faster-sedimenting fraction, to an extent of 5–8% only, was observed in each case. 2. Similar physical properties were exhibited by these glycoproteins and they each have a molecular weight of about 105000. 3. In chemical composition, differences have been observed and the glycoproteins can be classified into three groups: (a) sheep and goat glycoproteins; (b) cow and buffalo glycoproteins; (c) monkey glycoprotein. Glucose, galactosamine and N-terminal amino acid were absent from these proteins. 4. These glycoproteins were trypsin inhibitors and prolonged the clotting time of plasma.  相似文献   
24.
25.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   
26.
A Bacillus subtilis transconjugant with a Tn916 chromosomal insert was obtained through mating with Escherichia coli carrying the transposon as a plasmid insert. Actinomycetes were identified as frequent transposon recipients following the introduction of the B. subtilis transconjugant into a soil microcosm.  相似文献   
27.
Thiobacillus ferrooxidans cells grown on sulfur, pyrite, and chalcopyrite exhibit greater hydrophobicity than ferrous ion-grown cells. The isoelectric points of sulfur-, pyrite-, and chalcopyrite-grown cells were observed to be at a pH higher than that for ferrous ion-grown cells. Microbe-mineral interactions result in change in the surface chemistry of the organism as well as that of the minerals with which it has interacted. Sulfur, pyrite, and chalcopyrite after interaction with T. ferrooxidans exhibited a significant shift in their isoelectric points from the initial values exhibited by uninteracted minerals. With antibodies raised against sulfur-grown T. ferrooxidans, pyrite- and chalcopyrite-grown cells showed immunoreactivity, whereas ferrous ion-grown cells failed to do so. Fourier transform infrared spectroscopy of sulfur-grown cells suggested that a proteinaceous new cell surface appendage synthesized in mineral-grown cells brings about adhesion to the solid mineral substrates. Such an appendage was found to be absent in ferrous ion-grown cells as it is not required during growth in liquid substrates.  相似文献   
28.
Alkylation-induced germ cell mutagenesis in the mouse versus Drosophila is compared based on data from forward mutation assays (specific-locus tests in the mouse and in Drosophila and multiple-locus assays in the latter species) but not including assays for structural chromosome aberrations. To facilitate comparisons between mouse and Drosophila, forward mutation test results have been grouped into three categories. Representatives of the first category are MMS (methyl methanesulfonate) and EO (ethylene oxide), alkylating agents with a high s value which predominantly react with ring nitrogens in DNA. ENU (N-ethyl-N-nitrosourea), MNU (N-methyl-N-nitrosourea), PRC (procarbazine), DEN (N-nitrosodiethylamine), and DMN (N-nitrosodimethylamine) belong to the second category. These agents have in common a considerable ability for modification at oxygens in DNA. Cross-linking agents (melphalan, chlorambucil, hexamethylphosphoramide) from the third category.The most unexpected, but encouraging outcome of this study is the identification of common features for three vastly different experimental indicators of genotoxicity: hereditary damage in Drosophila males, genetic damage in male mice, and tumors (TD50 estimates) in rodents. Based on the above three category classification scheme the following tentative conclusions are drawn. Monofunctional agents belonging to category 1, typified by MMS and EO, display genotoxic effects in male germ cell stages that have passed meiotic division. This phenomenon seems to be the consequence of a repair deficiency during spermiogenesis for a period of 3–4 days in Drosophila and 14 days in the mouse. We suggest that the reason for the high resistance of premeiotic stages, and the generally high TD50 estimates observed for this class in rodents, is the efficient error-free repair of N-alkylation damage. If we accept this hypothesis, then the increased carcinogenic potential in rodents, seen when comparing category 2 (ENU-type mutagens) to category 1 (MMS-type mutagens), along with the ability of category 2 genotoxins to induce genetic damage in premeiotic stages, must presumably be due to their enhanced ability for alkylations at oxygens in DNA; it is this property that actually distinguishes the two groups from each other. In contrast to category 1, examination of class 2 genotoxins (ENU and DEN) in premeiotic cells of Drosophila gave no indication for a significant role of germinal selection, and also removal by DNA repair was less dramatic compared to MMS. Thus category 2 mutagens are expected to display activity in a wide range of both post- and premeiotic germ cell stages. A number of these agents have been demonstrated to be among the most potent carcinogens in rodents. In terms of both hereditary damage and the initiation of cancers (low TD50), cross-linking agents (category 3) comprise a considerable genotoxic hazard. Doubling doses for the mouse SLT have been determined for four cross-linking agents not requiring metabolic conversion and in all four cases the doubling doses for these agents were lower than those for MMS, DES and EMS. In support of this conclusion, two of 10 genotoxic agents, for which data on chromosomal aberrations were available for both somatic cells and germ cells in mice, were cross-linking agents and again the doubling dose estimates are lower than for monofunctional agents. Four cross-linking agents induced mutations in stem cell spermatogonia indicating that this type of agent can be active in a wide range of germ cell stages.Quite in contrast to what is generally observed in unicellular systems and in mammalian cells in culture, both cross-linking agents and MMS-type mutagens (high s value) predominantly produce deletion mutations in postmeiotic male germ cell stages. This is the uniform picture found for both Drosophila and the mouse. It is concluded that in vitro systems, in contrast to Drosophila germ cells, fail to predict this very intriguing feature of mouse germ line mutagenesis. In addition to their potential for induction of deletions and other rearrangements, cross-linking agents are among the most efficient inducers of mitotic recombination in Drosophila. Thus there are several mechanisms by which cross-linking agents may cause loss of heterozygosity for long stretches of DNA sequences, leading to expression of recessive genes. Since a substantial portion of agents used in the chemotherapy of cancers have cross-linking potential, the potential hazards of hereditary damage and cancers associated with this class of genotoxins should, in our opinion, receive more attention than they have in the past.  相似文献   
29.
Enzymatic 3-O-sulfation of terminal ß-Gal residueswas investigated by screening sulfotransferase activity presentin 37 human tissue specimens toward the following synthesizedacceptor moieties: Galß1,3GalNAc-O-Al, Galß1,4GlcNAcß-O-Al,Galß1,3GlcNAcß-O-Al, and mucin-type Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnstructures containing a C-3 methyl substituent on either Gal.Two distinct types of Gal: 3-O-sulfotransferases were revealed.One (Group A) was specific for the Galß1, 3GalNAc-linkage and the other (Group B) was directed toward the Galß1,4GlcNAcbranch ß1,6 linked to the blood group T hapten. Enzymeactivities found in breast tissues were unique in showing astrict specificity for the T-hapten. Galß-O-allylor benzyl did not serve as acceptors for Group A but were veryactive with Group B. An exainination of activity present insix human sera revealed a specificity of the serum enzyme towardß1,3 linked Gal, particularly, the T-hapten withoutß1,6 branching. Group A was highly active toward T-haptenlacrylamidecopolymer, anti-freeze glycoprotein, and fetuin O-glycosidicasialo glycopeptide; less active toward fetuin triantennaryasialo glycopeptide; and least active toward bovine IgG diantennaryglycopeptide. Group B was moderately and highly active, respectively,with the latter two glycopeptides noted and least active withthe first two. Competition experiments performed with Galß1,3GaLNAc-O-Aland Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnhaving a C-3 substituent (methyl or sulfate) on either Gal reinforcedearlier findings on the specificity characteristics of GroupA and Group B. Group A displayed a wider range of optimal activity(pH 6.0–7.4), whereas Group B possessed a peak of activityat pH 7.2. Mg2+ stimulated Group A 55% and Group B 150%, whereasMn+2 stimulated Group B 130% but inhibited Group A 75%. Ca2+stimulated Group B 100% but inhibited Group A 35%. Group A andGroup B enzymes appeared to be of the same molecular size (<100,000Da) as observed by Sephacryl S-100 HR column chromatography.The following effects upon Gal: 3-O- sulfotransferase activitiesby fucose, sulfate, and other substituents on the carbohydratechains were noted. (1) A methyl or GlcNAc substituent on C-6of GalNAc diminished the ability of Galß1,3GalNAc-O-Alto act as an acceptor for Group A. (2) An 1,3-fucosyl residueon the ß1,6 branch in the mucin core structure didnot affect the activity of Group A toward Gal linked ß1,3to GalNAc-. (3) Lewis x and Lewis a terminals did not serveas acceptors for either Group A or B enzymes. (4) Eliminationof Group B activity on Gal in the ß1,6 branch owingto the presence of a 3-fucosyl or 6-sulfo group on GlcNAc didnot hinder any action toward Gal linked ß1,3 to GalNAc.(5) Group A activity on Gal linked ß1,3 to GalNAcremained imaffected by 3'-sulfation of the ß1,6 branch.The reverse was true for Group B. (6) The acceptor activityof the T-hapten was increased somewhat upon C-6 sulfation ofGalNAc, whereas, C-6 slalylation resulted in an 85% loss ofactivity. (7) A novel finding was that Galß1,4GlcNAcß-O-Aland Galß1,3GlcNAcß-O-M, upon C-6 sulfationof the GlcNAc moiety, became 100% inactive and 5- to 7-foldactive, respectively, in their ability to serve as acceptorsfor Group B. human tissues glycoprotein galactose:sulfotransferase specificities kinetic properties  相似文献   
30.
A. T. Natarajan  G. Obe 《Chromosoma》1984,90(2):120-127
Chinese hamster ovary cells (CHO cells) and mouse fibroblasts (PG 19) were permeabilized with inactivated Sendai virus, treated with different types of restriction endonucleases (Eco RV, Pvu II, Bam HI, Sma I, Asu III, Nun II), and studied for the occurrence of chromosomal aberrations at different times following treatment. The pattern of chromosomal aberrations observed was similar to that induced by ionizing radiations. Restriction endonucleases that induce blunt double-strand breaks (Eco RV, Pvu II) were more efficient in inducing chromosomal aberrations than those that induce breaks with cohesive ends (Bam HI, Nun II, Asu III). Ring types were very frequent among the aberrations induced by restriction enzymes. Cytosine arabinoside, an inhibitor of DNA repair, was found to increase the frequencies of aberrations induced by restriction enzymes, indicating its effect on ligation of double-strand breaks. The relevance of these results to the understanding of the mechanisms of chromosomal aberration formation following treatment with ionizing radiations is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号