首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2006年   1篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1989年   1篇
  1975年   1篇
排序方式: 共有50条查询结果,搜索用时 890 毫秒
31.
Coordinated rearrangements of the actin-myosin cytoskeleton facilitate early and late events in T cell activation and signal transduction. As many important features of cell shape rearrangement involve small GTP-binding proteins, we examined the contribution of Rho kinase to the functions of mature T cells. Inhibitors of the Rho kinase pathway all had similar actions to inhibit the proliferation of primary lymphocyte cultures. Likewise, transfection of the human Jurkat T cell line with a dominant negative, kinase-defective mutant of Rho kinase diminished Jurkat cell proliferation. Furthermore, inhibition of Rho kinase substantially attenuated the program of cytokine gene expression that characterizes T cell activation, blocked actomyosin polymerization, and prevented aggregation of the TCR/CD3 complex colocalized with lipid rafts. These actions are relevant to immune responses in vivo, as treatment with a Rho kinase inhibitor considerably prolonged the survival of fully allogeneic heart transplants in mice and diminished intragraft expression of cytokine mRNAs. Thus, Rho GTPases acting through Rho kinase play a unique role in T cell activation during cellular immune responses by promoting structural rearrangements that are critical for T cell signaling.  相似文献   
32.
Abstract

Five different Indian cassava mosaic virus (ICMV) specific primers were used to screen the virus from CMD affected samples collected from the different parts of Tamil Nadu. Out of five specific primers, three were designed to amplify the specific viral genes of ICMV and two were used for detection of ICMV. All primers amplified specific regions of the virus in all samples. The specific primer for amplification of coat protein gene of ICMV amplified 800 bp of coat protein gene from both ICMV and Sri Lankan cassava mosaic virus (SLCMV) infected samples invariably. The specific primer for amplifying movement protein (MP) gene amplified about 900 bp of movement protein gene from all CMD infected cassava samples. Likewise, 800 bp of nuclear shuttle protein (NSP) gene was amplified from all the samples. The primer ICMV A amplified 700 bp of PCR product from mosaic diseased cassava samples. A 300 bp product from DNA A of the virus amplified in all samples using the primer ICMV A1.  相似文献   
33.

Pluchea lanceolata (DC.) C.B. Clarke is a threatened native medicinal plant. Increasing the propagation of this plant will preserve the wild population and provide material for medicinal use. In vitro and field-collected shoots and leaves were tested for response to 2,4-dichlorophenoxyacetic acid (2,4-D) and thidiazuron (TDZ), for initiation of direct shoot regeneration (DSR), or direct somatic embryogenesis (DSE). Leaves and internodes collected from field-grown plants produced only callus, while in vitro–raised shoots exhibited DSR and DSE on Murashige and Skoog (MS) medium with 2,4-D and TDZ. Direct shoot regeneration occurred on medium with TDZ from internode and leaf segments obtained from in vitro–developed shoots. In vitro–grown shoots were rooted on half-strength MS medium with 2 mg L−1 indole-3-butyric acid and acclimatized. Survival in natural conditions was 62.5% for DSE and 79% for DSR plantlets.

  相似文献   
34.
35.
The human ether-a-go-go related gene (hERG) encodes the voltage-gated K(+) channel that underlies the rapidly activating delayed-rectifier current in cardiac myocytes. hERG is synthesized in the endoplasmic reticulum (ER) as an "immature" N-linked glycoprotein and is terminally glycosylated in the Golgi apparatus. Most hERG missense mutations linked to long QT syndrome type 2 (LQT2) reduce the terminal glycosylation and functional expression. We tested the hypothesis that a distinct pre-Golgi compartment negatively regulates the trafficking of some LQT2 mutations to the Golgi apparatus. We found that treating cells in nocodazole, a microtubule depolymerizing agent, altered the subcellular localization, functional expression, and glycosylation of the LQT2 mutation G601S-hERG differently from wild-type hERG (WT-hERG). G601S-hERG quickly redistributed to peripheral compartments that partially colocalized with KDEL (Lys-Asp-Glu-Leu) chaperones but not calnexin, Sec31, or the ER golgi intermediate compartment (ERGIC). Treating cells in E-4031, a drug that increases the functional expression of G601S-hERG, prevented the accumulation of G601S-hERG to the peripheral compartments and increased G601S-hERG colocalization with the ERGIC. Coexpressing the temperature-sensitive mutant G protein from vesicular stomatitis virus, a mutant N-linked glycoprotein that is retained in the ER, showed it was not restricted to the same peripheral compartments as G601S-hERG at nonpermissive temperatures. We conclude that the trafficking of G601S-hERG is negatively regulated by a microtubule-dependent compartment within the ER. Identifying mechanisms that prevent the sorting or promote the release of LQT2 channels from this compartment may represent a novel therapeutic strategy for LQT2.  相似文献   
36.
A pair of chiral binuclear ruthenium(II) complexes were prepared and their binding affinities towards double stranded native DNA were assessed by observing isotropic absorption, polarized light spectra - circular and linear dichroism (CD and LD), fluorescence quenching and DNA thermal denaturation. Upon binding to DNA, the complexes produced LD signals consisting of positive and negative signals in the absorption region, although they exhibited red shift and hypochromism in the absorption spectrum. These contrasting observations indicated that the binding modes of the complexes are largely deviated from classical intercalative binding. Groove binding of the complexes to DNA was found to be more likely than intercalative binding. The small increase of DNA melting temperature in the presence of the complexes indicated a predominance of DNA groove binding. The absence of “molecular light switch effect” further supported non-intercalative binding. The groove binding propensity of complexes was also supported by comparison of the resulting data with the [Ru(phen)2(dppz)]2+.  相似文献   
37.
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) is an important enzyme that participates in lignin biosynthesis especially in the formation of cell wall ferulic esters of plants. It plays a pivotal role in the methylation of the 3-hydroxyl group of caffeoyl CoA. Two cDNA clones that code CCoAOMT were isolated earlier from subabul and in the present study; 3D models of CCoAOMT1 and CCoAOMT2 enzymes were built using the MODELLER7v7 software to find out the substrate binding sites. These two proteins differed only in two amino acids and may have little or no functional redundancy. Refined models of the proteins were obtained after energy minimization and molecular dynamics in a solvated water layer. The models were further assessed by PROCHECK, WHATCHECK, Verify_3D and ERRAT programs and the results indicated that these models are reliable for further active site and docking analysis. The refined models showed that the two proteins have 9 and 10 α-helices, 6 and 7 β-sheets respectively. The models were used for docking the substrates CoA, SAM, SAH, caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapyl CoA which showed that CoA and caffeoyl CoA are binding with high affinity with the enzymes in the presence and absence of SAM. It appears therefore that caffeoyl CoA is the substrate for both the isoenzymes. The results also indicated that CoA and caffeoyl CoA are binding with higher affinity to CCoAOMT2 than CCoAOMT1. Therefore, CCoAOMT2 conformation is thought to be the active form that exists in subabul. Docking studies indicated that conserved active site residues Met58, Thr60, Val63, Glu82, Gly84, Ser90, Asp160, Asp162, Thr169, Asn191 and Arg203 in CCoAOMT1 and CCoAOMT2 enzymes create the positive charge to balance the negatively charged caffeoyl CoA and play an important role in maintaining a functional conformation and are directly involved in donor-substrate binding.  相似文献   
38.
Ischemia-reperfusion-induced neutrophil adhesion to endothelium is CD18-dependent, but information regarding polarity of CD18 adhesion molecules remains speculative. This study evaluated neutrophil adhesion using an in vitro cell adhesion assay and introduces a quantitative method of measuring CD18 membrane distribution using confocal microscopy. Neutrophils from normal animals were isolated from whole blood and incubated with plasma from rat gracilis muscle flaps with no ischemia and reperfusion (nonischemic control, n = 10) or 4 hours of ischemia and 90 minutes of reperfusion (ischemia/reperfusion, n = 10), on coverslips pretreated with and without (phosphate-buffered saline) soluble intercellular adhesion molecules. Coverslips without intercellular adhesion molecules represented a negative control (intercellular adhesion molecules were required for adhesion). Percent adherence to intercellular adhesion molecules was expressed as a ratio of adherent cells/total cells. CD18 polarization was assessed by staining neutrophils with fluorescein isothiocyanate-labeled anti-CD11b, followed by confocal microscopy and Z-stack analysis. Membrane-associated CD18 was expressed as fluorescence intensity units in three equal areas of the cell membrane. Capping was defined as twice as much fluorescence in 33 percent of the cell membrane as in the remaining 67 percent. Neutrophils exposed to ischemia and reperfusion plasma showed a significant increase in adhesion (0.8 +/- 0.1 percent versus 16.7 +/- 2.2 percent, p < 0.001) and CD18 polarization (6.2 +/- 1.7 percent versus 43.9 +/- 12.2 percent, p = 0.0206) compared with controls. This article describes an in vitro assay that reliably reproduces the neutrophil adhesion phenomenon associated with ischemia-reperfusion injury. Results from confocal microscopy allowed for quantitative estimation of membrane-associated receptor polarization.  相似文献   
39.
Mice infected with Listeria monocytogenes (LM) generate CD8 effectors specific for f-MIGWII, the amino terminus of the bacterial product lemA presented by the class Ib MHC molecule H2 M3wt. lemA has several distinctive properties: 1) it is readily presented as an exogenous Ag in the absence of bacterial infection; 2) it is processed by a TAP-independent pathway, which is sensitive to chloroquine, pepstatin, and brefeldin; and 3) the immunogenic portion of the molecule is extremely resistant to proteolytic degradation even by proteinase K. To assess the structural basis for these findings, we expressed a truncated variant (t-lemA) containing the amino-terminal hexapeptide and the subsequent 27 amino acids linked to a histidine tail in Escherichia coli, and purified the product by affinity chromatography. Purified t-lemA could be presented to f-MIGWII-specific effectors by macrophages and fibroblasts at 1-10 nM. Unlike f-MIGWII, which binds directly to H2 M3wt, t-lemA required processing by a chloroquine-, pepstatin-, and brefeldin-sensitive pathway. Brefeldin sensitivity often implies endogenous processing in the cytoplasm, but several lines of evidence suggest translocation to the cytoplasm and proteosomal degradation are not critical for t-lemA presentation. Unlike f-MIGWII, t-lemA was profoundly resistant to proteinase K, and, using 35S-labeled t-lemA, we could identify the region from position 1 to approximately 30 as the protease-resistant element. Thus, the hydrophobic peptide sequence following f-MIGWII can account for the unusual properties of lemA noted above. Analogous modification could be used to alter the properties of other peptide Ags presented by class I MHC products.  相似文献   
40.
The present study investigated the antimicrobial and antibiofilm potential of biosurfactants derived from Lactobacillus fermentum Lf1, L. fermentum LbS4 and Lactobacillus plantarum A5 against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). The cell wall-bound and intracellular biosurfactants were extracted by solvent extraction method. Fourier-transform infrared spectroscopy-based characterization of biosurfactants revealed the heterogeneous chemical composition involving proteins, fatty acids and carbohydrate moieties in LbS4 and A5, while only the sugar and lipid fractions in Lf1. Fatty acid profiling using Gas chromatography-mass spectrometry indicated hexadecanoic acid and stearic acid as the predominant fatty acids in the biosurfactants of all these strains. Biosurfactants demonstrated dose-dependent antibacterial action against MRSA isolates with the highest inhibition zone diameter (30·0 ± 0·0 to 35·0 ± 0·0 mm) recorded at 400 mg ml−1. Biosurfactants showed an excellent staphylococcal antibiofilm activity by preventing the biofilm formation and disrupting the preformed biofilms. Visual inspection through scanning electron microscopy witnessed the biosurfactants-induced alteration in the cell membrane integrity and subsequent membrane pore formation on staphylococcal cells. Taken together, our findings emphasize the prospects of biomedical applications of biosurfactants as bactericidal and biofilm controlling agents to confront staphylococcal nosocomial infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号