首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   48篇
  619篇
  2023年   1篇
  2022年   7篇
  2021年   10篇
  2020年   9篇
  2019年   10篇
  2018年   11篇
  2017年   17篇
  2016年   25篇
  2015年   22篇
  2014年   17篇
  2013年   42篇
  2012年   42篇
  2011年   32篇
  2010年   37篇
  2009年   26篇
  2008年   41篇
  2007年   36篇
  2006年   40篇
  2005年   35篇
  2004年   32篇
  2003年   31篇
  2002年   32篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   13篇
  1997年   4篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1990年   2篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
排序方式: 共有619条查询结果,搜索用时 15 毫秒
61.
Stm1p is a Saccharomyces cerevisiae protein that is primarily associated with cytosolic 80S ribosomes and polysomes. Several lines of evidence suggest that Stm1p plays a role in translation under nutrient stress conditions, although its mechanism of action is not yet known. In this study, we show that yeast lacking Stm1p (stm1Δ) are hypersensitive to the translation inhibitor anisomycin, which affects the peptidyl transferase reaction in translation elongation, but show little hypersensitivity to other translation inhibitors such as paromomycin and hygromycin B, which affect translation fidelity. Ribosomes isolated from stm1Δ yeast have intrinsically elevated levels of eukaryotic elongation factor 3 (eEF3) associated with them. Overexpression of eEF3 in cells lacking Stm1p results in a growth defect phenotype and increased anisomycin sensitivity. In addition, ribosomes with increased levels of Stm1p exhibit decreased association with eEF3. Taken together, our data indicate that Stm1p plays a complementary role to eEF3 in translation.  相似文献   
62.
The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Long-term changes in the BDNF pathway are associated with childhood adversity and adult depression symptoms. Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reports indicated the relationship between stress and BDNF to be much more complex, and the concept was significantly revised. In the present mini-review, we focus on the structure and regulation of the Bbnf gene as well as on the stress–BDNF interactions under early-life adverse conditions.  相似文献   
63.
Annular lipid-protein stoichiometry in native pig kidney Na+/K+ -ATPase preparation was studied by [125I]TID-PC/16 labeling. Our data indicate that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in E2, i.e., the conformational transitions are accompanied by changes in the number of annular lipids but not in the affinity of these lipids for the protein. The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (β subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (β subunit) in the E2 conformation.  相似文献   
64.
The utility of the present generation of recombinant adenovirus vectors for gene therapy applications could potentially be improved by designing targeted vectors capable of gene delivery to selected cell types in vivo. In order to achieve such targeting, we are investigating the possibilities of incorporation of ligands in the adenovirus fiber protein, which mediates primary binding of adenovirus to its cell surface receptor. Based on the proposed structure of the cell-binding domain of the fiber, we hypothesized that the HI loop of the fiber knob can be utilized as a convenient locale for incorporation of heterologous ligands. In this study, we utilized recombinant fiber proteins expressed in baculovirus-infected insect cells to demonstrate that the incorporation of the FLAG octapeptide into the HI loop does not ablate fiber trimerization and does not disturb formation of the cell-binding site localized in the knob. We then generated a recombinant adenovirus containing this modified fiber and showed that the short peptide sequence engineered in the knob is compatible with the biological functions of the fiber. In addition, by using a ligand-specific antibody, we have shown that the peptide incorporated into the knob remains available for binding in the context of mature virions containing modified fibers. These findings suggest that heterologous ligands can be incorporated into the HI loop of the fiber knob and that this locale possesses properties consistent with its employment in adenovirus retargeting strategies.Recombinant adenovirus vectors have found wide employment for a number of gene therapy applications (22, 36, 40). This fact has derived principally from the high levels of gene transfer achievable with this vector approach both in vitro and in vivo. Indeed, recombinant adenovirus vectors are distinguished from other available systems by their unique ability to accomplish in situ gene delivery to differentiated target cells in a variety of organ contexts (5, 6, 9, 10, 12, 21, 26, 28, 30, 32). Despite this property, specific aspects of the adenovirus biology have prevented the full realization of the potential of such vectors. In this regard, the broad tropism profile of the parent virus for cells of diverse tissues potentially allows unrestricted gene delivery. Thus, for the many gene therapy applications requiring targeted, cell-specific gene delivery, the promiscuous tropism of the adenovirus vector represents a confounding factor. Based on this concept, strategies to modify the native tropism of adenovirus have been developed to allow the derivation of vectors capable of targeted gene delivery.Strategies to achieve this end are directed at modifying specific steps in the adenovirus infection pathway. Adenoviruses of serotypes 2 and 5 normally achieve initial recognition and binding to target cells by means of interactions between the carboxy-terminal knob domain of the fiber protein and the primary receptor (4, 19, 39). After binding, RGD motifs in the penton base interact with cellular integrins of the αVβ3 and αVβ5 types (13, 43, 44). This interaction triggers cellular internalization whereby the virions achieve localization within the endosome. Acidification of the endosome elicits conformational changes in capsid proteins, allowing their interaction with the endosome membrane in a manner that achieves vesicle disruption and particle escape (41). Following endosomolysis, the virion translocates to the nucleus, where the subsequent steps of the viral life cycle occur. This understanding of the key role played by capsid proteins in the viral infectious pathway has suggested strategies to alter this process via modifications of these proteins.In this regard, genetic retargeting of adenovirus vectors via modification of viral genes encoding coat proteins, if successful, offers a simple way to achieve a significant improvement in the present generation of these gene-delivery vehicles. To this end, several groups have reported genetic modifications to the knob domain of adenovirus fiber protein and incorporation of such chimeric fibers into virions. For instance, Stevenson et al. (37) and Krasnykh et al. (25) reported successful generation of adenovirus type 5 (Ad5) virions containing fibers consisting of the tail and shaft domains of Ad5 fiber and the knob domain of Ad3, respectively. In addition, Michael et al. (31) demonstrated the incorporation of the gastrin-releasing peptide into the carboxy terminus of recombinant Ad5 fiber. This finding was extended by Legrand et al. (30a), who achieved rescue of recombinant adenovirus vectors containing such fibers. Another report published by Wickham et al. (45) described the generation of recombinant virus containing fibers with carboxy-terminal polylysine sequences. These studies have established key feasibility issues with respect to this genetic approach but have also demonstrated a number of potentially limiting factors.Of note, all the modifications of adenovirus fiber reported so far were directed towards the carboxy terminus of the protein. In addition, these efforts were initiated without prior knowledge of the three-dimensional (3D) structure of the fiber knob. Thus, the employment of the carboxy terminus of the fiber represented a choice of convenience without consideration of the knob tertiary structure. Clearly, 3D structural information has important bearing upon the placement of heterologous protein sequences within the knob for targeting purposes. Such localization of targeting ligands would ideally be achieved in such a manner as to allow their surface presentation and to minimally perturb the fiber quaternary structure. Thus, the recent crystallization of the fiber knob by Xia et al. (47, 48) has provided a level of structural resolution potentially allowing such a rational modification of the fiber protein. According to the proposed 3D model of the knob (Fig. (Fig.1),1), the HI loop possesses a number of features which predict its utility as an alternative site for ligand incorporation. Specifically, the HI loop does not contribute to intramolecular interactions in the knob. Therefore, incorporation of additional protein sequence should not affect the trimerization of the fiber. In addition, the loop consists mostly of hydrophilic amino acid residues and is exposed outside the knob. It thus potentially demonstrates a high degree of flexibility, creating an optimal environment for ligand incorporation. Furthermore, the lengths of HI loops vary significantly in knobs of different adenovirus serotypes. This fact suggests that alterations of the original structure of the loop, such as insertions and deletions, should be compatible with the correct folding of the entire knob domain. Finally, the HI loop is not involved in the formation of the putative cell-binding site localized in the knob. Open in a separate windowFIG. 13D model of the Ad5 fiber knob. The trimer forms a propeller-like structure when it is viewed along the threefold-symmetry axis from above. The HI loop, exposed outside the knob, connects the β-strands H and I, which are involved in the formation of the cell-binding site. (Reproduced from reference 47 by permission.)Based on these considerations, we endeavored to develop a novel approach to modify the adenovirus fiber protein by employing the HI loop of the knob for this purpose. We show in this report that it is possible to incorporate heterologous amino acid sequences into the HI loop without affecting the correct folding of the fiber polypeptide and its biological functions. Further, our results suggest that this locale may offer advantages for strategies designed to achieve tropism modification based on genetic alteration of capsid proteins.  相似文献   
65.
Natalya V. Dudkina 《FEBS letters》2010,584(12):2510-2515
Ongoing progress in electron microscopy (EM) offers now an opening to visualize cells at the nanoscale by cryo-electron tomography (ET). Large protein complexes can be resolved at near-atomic resolution by single particle averaging. Some examples from mitochondria and chloroplasts illustrate the possibilities with an emphasis on the membrane organization. Cryo-ET performed on non-chemically fixed, unstained, ice-embedded material can visualize specific large membrane protein complexes. In combination with averaging methods, 3D structures were calculated of mitochondrial ATP synthase at 6 nm resolution and of chloroplast photosystem II at 3.5 nm.  相似文献   
66.
We conducted a randomized, double-blind, placebo-controlled, crossover study at a single center in South Africa, to ascertain whether amitriptyline is an effective analgesic for painful HIV-associated sensory neuropathy of moderate to severe intensity in: i) antiretroviral drug naive individuals, and ii) antiretroviral drug users. 124 HIV-infected participants (antiretroviral drug naive = 62, antiretroviral drug users = 62) who met the study criteria for painful HIV-associated sensory neuropathy were randomized to once-daily oral amitriptyline (titrated to a median: interquartile range of 50: 25-50 mg) or placebo for six weeks, followed by a three-week washout period and subsequent treatment crossover. The primary outcome measure was change from baseline in worst pain intensity of the feet (measured by participant self-report using an 11-point numerical pain rating scale) after six weeks of treatment. 122 of 124 participants completed all study visits and were included in the analysis of the primary outcome. In the antiretroviral drug-naive group (n = 61) there was no significant difference in the mean change in pain score from baseline after six weeks of treatment with placebo or amitriptyline [amitriptyline: 2.8 (SD 3.3) vs. placebo: 2.8 (3.4)]. Similarly, there was no significant difference in the change in pain score after six weeks of treatment with placebo or amitriptyline in the antiretroviral drug-user group (n = 61) [amitriptyline: 2.7 (3.3) vs. placebo: 2.1 (2.8)]. Controlling for period effects and treatment order effects did not alter the outcome of the analyses. Nor did analyzing the intention-to-treat cohort (missing data interpolated using baseline observation carried forward) alter the outcome of the analyses. In summary, amitriptyline, at the doses used here, was no more effective than an inactive placebo at reducing pain intensity in individuals with painful HIV-associated sensory neuropathy of moderate to severe intensity, irrespective of whether they were on antiretroviral therapy or not.

Trial Registration

ISRCTN 54452526  相似文献   
67.
Sortase A catalyzed ligation of ultra-short peptides leads to inter/intra-molecular transpeptidation to form either linear or cyclic oligomers dependent upon the peptide length. Cyclic peptides were the main products for peptides with more than 15aa. However, for ultra-short (<15aa) peptides, cyclic oligomers became predominant in prolonged reactions. Peptides with 1–3 aminoglycines were equally active but peptide oligomers from peptide containing more than one aminoglycine were prone to hydrolysis.  相似文献   
68.
The contribution of electrostatic forces to the interaction of Na,K-ATPase with adenine nucleotides was investigated by studying the effect of ionic strength on nucleotide binding. At pH 7.0 and 20 degrees C, there was a qualitative correlation between the equilibrium dissociation constant (K(d)) values for ATP, ADP, and MgADP and their total charges. All K(d) values increased with increasing ionic strength. According to the Debye-Hückel theory, this suggests that the nucleotide binding site and its ligands have "effective" charges of opposite signs. However, quantitative analysis of the dependence on ionic strength shows that the product of the effective electrostatic charges on the ligand and the binding site is the same for all nucleotides, and is therefore independent of the total charge of the nucleotide. The data suggest that association of nucleotides with Na,K-ATPase is governed by a partial charge rather than the total charge of the nucleotide. This charge, interacting with positive charges on the protein, is probably the one corresponding to the alpha-phosphate of the nucleotide. Dissociation rate constants measured in complementary transient kinetic experiments were 13 s(-1) for ATP and 27 s(-1) for ADP, independent of the ionic strength in the range 0.1-0.5 M. This implies similar association rate constants for the two nucleotides (about 40 x 10(6) M(-1) s(-1) at I = 0.1 M). The results suggest that long-range Coulombic forces, affecting association rates, are not the main contributors to the observed differences in affinities, and that local interactions, affecting dissociation rates, may play an even greater role.  相似文献   
69.
70.
Using radio-receptor analysis, it has been demonstrated that human beta-casomorphin-7 (Tyr-Pro-Phe-Val-Glu-Pro-Ile) displaces 3H-spiperone from 5-HT2-receptors of rat brain frontal cortex. IC50 of human beta-casomorphin-7 was 8 microM. These data suggest that one of the mechanisms of neurotropic action of beta-casomorphin-7 is might be associated with its influence on the serotoninergic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号