首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   48篇
  614篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   10篇
  2020年   8篇
  2019年   7篇
  2018年   9篇
  2017年   15篇
  2016年   17篇
  2015年   21篇
  2014年   14篇
  2013年   42篇
  2012年   43篇
  2011年   30篇
  2010年   32篇
  2009年   26篇
  2008年   40篇
  2007年   37篇
  2006年   40篇
  2005年   37篇
  2004年   31篇
  2003年   30篇
  2002年   34篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   14篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1977年   3篇
  1975年   4篇
  1974年   1篇
  1972年   1篇
排序方式: 共有614条查询结果,搜索用时 0 毫秒
11.
The Na+,K+-ATPase belongs to the P-ATPase family, whose characteristic property is the formation of a phosphorylated intermediate. The enzyme is also a defined target for cardiotonic steroids which inhibit its functional activity and initiate intracellular signaling. Here we describe the 4.6 ? resolution crystal structure of the pig kidney Na+,K+-ATPase in its phosphorylated form stabilized by high affinity binding of the cardiotonic steroid ouabain. The steroid binds to a site formed at transmembrane segments αM1-αM6, plugging the ion pathway from the extracellular side. This structure differs from the previously reported low affinity complex with potassium. Most importantly, the A domain has rotated in response to phosphorylation and αM1-2 move towards the ouabain molecule, providing for high affinity interactions and closing the ion pathway from the extracellular side. The observed re-arrangements of the Na+,K+-ATPase stabilized by cardiotonic steroids may affect protein-protein interactions within the intracellular signal transduction networks.  相似文献   
12.
The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD↓L50 site initiates the MT1-MMP activation, whereas the 108RRKR111↓Y112 cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP.  相似文献   
13.
The novel isosteric ribavirin analogues were synthesized by two different ways. Some of them showed significant antiviral action against hepatitis C virus (HCV), herpes simplex (HCV-1) and influenza A virus comparable to that of ribavirin itself. The data obtained confirm the proposed theory of the ribavirin possible antiviral activity mechanism related with bioisosterism.  相似文献   
14.
Background aimsAcute pyelonephritis is one of the most frequent infectious diseases of the urinary tract and a leading cause of kidney failure worldwide. One strategy for modulating excessive inflammatory responses in pyelonephritis is administration of mesenchymal multipotent stromal cells (MMSCs).MethodsThe putative protective effect of injection of MMSCs against experimental acute pyelonephritis was examined. We used in vivo experimental model of APN where bacteria are introduced in the bladder of rat. Three days after, intravenous injection of MMSCs was done. On the 7th day blood samples and kidneys were taken for further analysis.ResultsWe found obvious signs of oxidative stress and inflammation in the kidney in acute pyelonephritis in rats. Particularly, pro-inflammatory cytokine tumor necrosis factor-α levels, malondialdehyde, nitrite and myeloperoxidase activity were significantly increased. Histologic evaluation revealed numerous attributes of inflammation and tissue damage in the kidney. Treatment with MMSCs caused a remarkable decrease of all of these pathologic signs in renal tissue. Also, activated leukocytes induced pre-conditioning-like signaling in MMSCs. We showed alterations of expression or activity of inducible nitric oxide synthase, transforming growth factor-β, matrix metalloproteinase-2 and glycogen synthase kinase-3β, which could mediate immunomodulation and protective effects of MMSCs. This signaling could be characterized as inflammatory pre-conditioning.ConclusionsThe beneficial capacity of MMSCs to alleviate renal inflammation was more pronounced when pre-conditioned MMSCs were used. This approach could be used to prime MMSCs with different inflammatory modulators to enhance their engraftment and function in an immunoprotected fashion.  相似文献   
15.
Responses to human cytomegalovirus (HCMV) infection are largely individual and cell type specific. We investigated molecular profiles in 2 primary cell cultures of human fibroblasts, which are highly or marginally sensitive to HCMV infection, respectively. We screened expression of genes and microRNAs (miRs) at the early (3 hours) stage of infection. To assess molecular pathway activation profiles, we applied bioinformatic algorithms OncoFinder and MiRImpact. In both cell types, pathway regulation properties at mRNA and miR levels were markedly different. Surprisingly, in the infected highly sensitive cells, we observed a “freeze” of miR expression profiles compared to uninfected controls. Our results evidence that in the sensitive cells, HCMV blocks intracellular regulation of microRNA expression already at the earliest stage of infection. These data suggest somewhat new functions for HCMV products and demonstrate dependence of miR expression arrest on the host-encoded factors.  相似文献   
16.
Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C–P lyase incapable of degrading GP (C–P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C–P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C–P lyase II. O. anthropi GPK 3 also degraded MP via C–P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.  相似文献   
17.
A series of novel 1,4-diaryl-2-azetidinones was prepared by stereospecific Staudinger reaction as conformationally restricted analogues of combretastatin A-4 because molecular modeling studies suggested close geometric similarities. They were evaluated for cytotoxicity against a number of human tumor and normal cell lines. Strong potencies were observed, with the best compounds exhibiting IC(50)'s of 25-74 nM against human neuroblastoma IMR 32 cell growth and a variety of other cell lines. Compounds inhibited tubulin polymerization with potencies commensurate with their cytotoxic activity and a more soluble anilino-containing analogue was very effective in inhibiting the growth of AR42J rat pancreatic tumors transplanted into in nude mice. Further studies on this interesting group of compounds as anti-cancer agents appear warranted.  相似文献   
18.
Plasmodium vivax is one of four Plasmodium species that cause human malaria. P. vivax and a related simian malaria parasite, Plasmodium knowlesi, invade erythrocytes by binding the Duffy antigen/receptor for chemokines (DARC) through their respective Duffy binding proteins. Here we show that tyrosines 30 and 41 of DARC are modified by addition of sulphate groups, and that the sulphated tyrosine 41 is essential for association of the Duffy binding proteins of P. vivax (PvDBP) and P. knowlesi (PkDaBP) with DARC-expressing cells. These sulphated tyrosines also participate in the association of DARC with each of its four known chemokine ligands. Alteration of tyrosine 41 to phenylalanine interferes with MCP-1, RANTES and MGSA association with DARC, but not with that of IL8. In contrast, alteration of tyrosine 30 to phenylalanine interferes with the association of IL8 with DARC. A soluble sulphated amino-terminal domain of DARC, but not one modified to phenylalanine at residue 41, can be used to block the association of PvDBP and PkDaBP with red blood cells, with an IC50 of approximately 5 nM. These data are consistent with a role for tyrosine sulphation in the association of many or most chemokines with their receptors, and identify a key molecular determinant of erythrocyte invasion by P. vivax.  相似文献   
19.
Bacteriophages of the family Myoviridae represent one of the most widespread domains of the biosphere substantially affecting the ecological balance of microorganisms. Interestingly, sequence analysis of genomic DNAs of large bacteriophages revealed many genes coding for proteins with unknown functions. A new approach is proposed to improve the functional identification of genes. This approach is based on comparing the genome sequence for phylogenetically and morphologically related phages showing no considerable homology at the level of genomic DNA. It is assumed that gene functions essential for the development of phages of a given family are conserved and that the corresponding genes code for similar orthologous proteins even when lacking sequence homology. The genome was sequenced and compared for two Pseudomonas aeruginosa giant bacteriophages, KZ and EL, which belong to a group of KZ-related phages. A substantial difference in genome organization was observed, suggesting specific features of phage evolution. In addition, the problem of the minimal genome of the superfamily is discussed on the basis of the difference in size and structure between the KZ and EL genomes.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 455–465.Original Russian Text Copyright © 2005 by Krylov, Pleteneva, Lavigne, Hertveldt, Volckaert, Sernova, Georgopoulos, Korchevskii, Kurochkina, Mesyanzhinov.  相似文献   
20.
The Cry1Ab toxin produced by Bacillus thuringiensis (Bt) exerts insecticidal action upon binding to BT-R1, a cadherin receptor localized in the midgut epithelium of the tobacco hornworm Manduca sexta [Dorsch, J. A., Candas, M., Griko, N. B., Maaty, W. S., Midboe, E. G., Vadlamudi, R. K., and Bulla, L. A., Jr. (2002) Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis, Insect Biochem. Mol. Biol. 32, 1025-1036]. BT-R1 represents a family of invertebrate cadherins whose ectodomains (ECs) are composed of multiple cadherin repeats (EC1 through EC12). In the present work, we determined the Cry1Ab toxin binding site in BT-R1 in the context of cadherin structural determinants. Our studies revealed a conserved structural motif for toxin binding that includes two distinct regions within the N- and C-termini of EC12. These regions are characterized by unique sequence signatures that mark the toxin-binding function in BT-R1 as well as in homologous lepidopteran cadherins. Structure modeling of EC12 discloses the conserved motif as a single broad interface that holds the N- and C-termini in close proximity. Binding of toxin to BT-R1, which is univalent, and the subsequent downstream molecular events responsible for cell death depend on the conserved motif in EC12.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号