首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   2篇
  国内免费   1篇
  104篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2016年   1篇
  2015年   7篇
  2014年   7篇
  2013年   7篇
  2011年   6篇
  2010年   4篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   7篇
  1995年   4篇
  1994年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1979年   2篇
  1968年   1篇
  1965年   2篇
  1956年   1篇
  1953年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
51.
52.
Guz NR  Stermitz FR 《Phytochemistry》2000,54(8):897-899
The reported isolation of cis-epoxyconiferyl alcohol must be incorrect, based upon comparison of the reported Nuclear Magnetic Resonance (NMR) spectral data for the isolate with those for synthesized coniferyl and cinnamyl alcohol epoxide derivatives. Attempts to prepare cis- and trans-coniferyl alcohols were unsuccessful, although their acetate derivatives could be synthesized. The NMR spectral data for a synthetic sample of pinoresinol were in excellent agreement with those for the purported isolate.  相似文献   
53.
Aging is a complex process involving morphologic and biochemical changes in single cells and in the whole organism. One of the most popular explanations of how aging occurs at the molecular level is the oxidative stress hypothesis. Oxidative stress leads in many cases to an age-dependent increase in the cellular level of oxidatively modified macromolecules including DNA, and it is this increase which has been linked to various pathological conditions, such as aging, carcinogenesis, neurodegenerative and cardiovascular diseases. It is, however, possible that a number of short-comings associated with gaps in our knowledge may be responsible for the failure to produce definite results when applied to understanding the role of DNA damage in aging and age-related diseases.  相似文献   
54.
We have used voluntary tongue contraction to test whether we can image activation of the hypoglossal nuclei within the human brain stem by using functional magnetic resonance imaging (fMRI). Functional images of the whole brain were acquired in eight subjects by using T2-weighted echo planar imaging (blood oxygen level development) every 6.2 s. Sequences of images were acquired during 12 periods of 31-s "isometric" rhythmic tongue contraction alternated with 12 periods of 31-s tongue relaxation. Noise arising from cardiac- and respiratory-related movement was removed either by filtration (high pass; cutoff 120 s) or by inclusion in the statistical analysis as confounding effects of no interest. For the group, tongue contraction was associated with significant signal increases (P < 0.05 corrected for multiple comparisons) in the sensorimotor cortex, supplementary motor area, operculum, insula, thalamus, and cerebellum. For the group and for six of eight individuals, significant signal increases were also seen within the medulla (P < 0.001, predefined region of interest with no correction for multiple comparisons); this signal is most likely to reflect neuronal activation associated with the hypoglossal motor nuclei. The data demonstrate that fMRI can be used to detect, simultaneously, the cerebral and brain stem control of tongue movement.  相似文献   
55.
Despite the existence of 10 avian paramyxovirus (APMV) serotypes, very little is known about the distribution, host species, and ecological factors affecting virus transmission. To better understand the relationship among these factors, we conducted APMV wild bird surveillance in regions of Ukraine suspected of being intercontinental (north to south and east to west) flyways. Surveillance for APMV was conducted in 6,735 wild birds representing 86 species and 8 different orders during 2006 to 2011 through different seasons. Twenty viruses were isolated and subsequently identified as APMV-1 (n = 9), APMV-4 (n = 4), APMV-6 (n = 3), and APMV-7 (n = 4). The highest isolation rate occurred during the autumn migration (0.61%), with viruses isolated from mallards, teals, dunlins, and a wigeon. The rate of isolation was lower during winter (December to March) (0.32%), with viruses isolated from ruddy shelducks, mallards, white-fronted geese, and a starling. During spring migration, nesting, and postnesting (April to August) no APMV strains were isolated out of 1,984 samples tested. Sequencing and phylogenetic analysis of four APMV-1 and two APMV-4 viruses showed that one APMV-1 virus belonging to class 1 was epidemiologically linked to viruses from China, three class II APMV-1 viruses were epidemiologically connected with viruses from Nigeria and Luxembourg, and one APMV-4 virus was related to goose viruses from Egypt. In summary, we have identified the wild bird species most likely to be infected with APMV, and our data support possible intercontinental transmission of APMVs by wild birds.  相似文献   
56.
Plastic materials for food packaging are being replaced by biodegradable films based on biopolymers due to the adverse effects they have had on animal life and the environment. In this study, nanocomposite films containing 2.5 wt% sodium caseinate and 2 wt% glycerol were reinforced with 0.1 or 0.2 wt% nano TiO2 prepared in two forms: spheres (P25) and tubes. The effects of nanoreinforcement geometry on mechanical, tensile, barrier, thermogravimetric, and optical properties, and distribution of nanoparticles were described. The interactions among film components were analyzed by Fourier transform infrared spectroscopy (FTIR). Addition of nanotubes significantly increased E' (341 wt%) and E" (395 wt%) moduli, the Young modulus E (660 wt%), the residual mass at 500°C (38 wt%), and color change (6.78) compared to control film. The compositional mapping studies showed that P25 nanoparticles were homogeneously distributed between the surfaces of the film while nanotubes were found on the bottom surface. The changes in position of the FTIR spectra signals as compared to pure protein signals indicated strong matrix/reinforcement interactions. In addition, the changes in intensity in 1100, 1033, and 1638 cm−1 FTIR signals suggested formation of a protein/Tween 20 ester. The geometry of reinforcement was highly relevant regarding physical properties, showing nanotubes as being very successful for enhancing tensile properties.  相似文献   
57.
It has been known for a long time that DNA hypomethylation occurs in many human cancers and precancerous conditions. However, the mechanisms of hypomethylation are largely unknown. It is possible that endogenous 8-oxo-7,8-dihydroguanine (8-oxoGua) level may be linked to aberrant DNA methylation of adjacent cytosine and in this way influences carcinogenesis. Therefore, the aim of the present study was to assess a possible link between 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) background level and 5-methylcytosine content in DNA from human leukocytes of healthy subjects (n = 105) as well as in patients with colon adenomas (n = 39) and carcinomas (n = 50).

Our results demonstrated statistically significant negative correlation between background level of 8-oxodG and 5-methylcytosine content in DNA isolated from leukocytes of healthy donors (r = −0.3436, p = 0.0003). The mean content of 5-methylcytosine was significantly lower, while 8-oxodG level was significantly higher in leukocytes DNA of patients with colon adenomas and carcinomas in comparison with healthy subjects. The mean values for 5-methylcytosine were: 3.59 ± 0.173% (healthy subjects), 3.38 ± 0.128% (patients with adenomas), 3.40 ± 0.208% (colon cancer patients). The mean values of 8-oxodG in DNA were, respectively: 4.67 ± 1.276, 5.72 ± 1.787, 5.76 ± 1.884 8-oxodG per 106 dG molecules. DNA from affected tissue (colon) suffered from significant, about 10% reduction in cytosine methylation in comparison with leukocytes of the paired subjects.

Our work provides the first in vivo evidence suggesting that increased levels of 8-oxodG in DNA may lead to carcinogenesis not only via mispair/mutagenic potential of the modified base but also through its ability to influence gene expression by affecting DNA methylation.  相似文献   

58.
This review is dedicated to the role of nitration of proteins by tyrosine residues in physiological and pathological conditions. First of all, we analyze the biochemical evidence of peroxynitrite formation and reactions that lead to its formation, types of posttranslational modifications (PTMs) induced by reactive nitrogen species, as well as three biological pathways of tyrosine nitration. Then, we describe two possible mechanisms of protein nitration that are involved in intracellular signal transduction, as well as its interconnection with phosphorylation/dephosphorylation of tyrosine. Next part of the review is dedicated to the role of proteins nitration in different pathological conditions. In this section, special attention is devoted to the role of nitration in changes of functional properties of actin—protein that undergoes PTMs both in normal and pathological conditions. Overall, this review is devoted to the main features of protein nitration by tyrosine residue and the role of this process in intracellular signal transduction in basal and pathological conditions.  相似文献   
59.
Mitochondrial F1Fo‐ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear‐ and mitochondria‐encoded subunits. Whereas chaperones for formation of the matrix‐exposed hexameric F1‐ATPase core domain have been identified, insight into how the nuclear‐encoded F1‐domain assembles with the membrane‐embedded Fo‐region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1‐module and peripheral stalk, but not with the assembled F1Fo‐ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1‐module to the membrane embedded Fo‐domain. We conclude that INAC represents a matrix‐exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo‐ATP synthase.  相似文献   
60.
Georgy Gause (1910–1986) is best known for his contribution to ecology and evolutionary theory. His book “The Struggle for Existence” (1934) inspired generations of ecologists. Yet his scientific interests were diverse, embracing many aspects of the life sciences and medicine. The most notable shift in his research took place in the early 1940s when he began to study antibiotics and discovered Gramicidin S. Superficially, this shift looked like an attempt to switch from purely theoretical to applied research during the years of World War II, but Gause’s decision may also have been seriously affected by the “Great Purge” and the growth of Lysenkoism. Personal factors played a significant role in his career too. In this article, we propose four factors which drove Gause to switch his focus from ecology to antibiotics: the inner logic of his scientific research, Stalin’s science policy and the growth of Lysenkoism, the sociopolitical influence of World War II, and personal relationships. We will also show how all these factors are interdependent to some extent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号