首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2394篇
  免费   221篇
  2615篇
  2023年   22篇
  2022年   56篇
  2021年   89篇
  2020年   48篇
  2019年   58篇
  2018年   67篇
  2017年   53篇
  2016年   93篇
  2015年   180篇
  2014年   178篇
  2013年   179篇
  2012年   231篇
  2011年   207篇
  2010年   132篇
  2009年   105篇
  2008年   146篇
  2007年   130篇
  2006年   105篇
  2005年   103篇
  2004年   103篇
  2003年   82篇
  2002年   81篇
  2001年   11篇
  2000年   10篇
  1999年   10篇
  1998年   10篇
  1997年   15篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1986年   3篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1971年   6篇
  1969年   4篇
  1948年   2篇
排序方式: 共有2615条查询结果,搜索用时 15 毫秒
51.
Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.  相似文献   
52.
Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, p<.01); n-6 PUFAs were higher: dihomo-gamma-linolenic acid (1.51% vs 1.32%, p<.01), arachidonic acid (11.54% vs 10.70%, p<.01), n-6 docosapentaenoic acid (DPA:.46% vs.34%, p<.01), and total n-6 PUFA (24.14% vs 23.37%, p<.05). Higher n-6 DPA predicted poorer mental health. Lower n-3 DPA was associated with higher self-reported bodily pain. Adults with MCI had higher depression scores (3.05±.39 vs 1.33±.24, p<.01). Depressive symptoms associated with elevated n-6 PUFA may contribute to cognitive decline in this population.  相似文献   
53.
The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion.  相似文献   
54.
Proteogenomics has emerged as a field at the junction of genomics and proteomics. It is a loose collection of technologies that allow the search of tandem mass spectra against genomic databases to identify and characterize protein-coding genes. Proteogenomic peptides provide invaluable information for gene annotation, which is difficult or impossible to ascertain using standard annotation methods. Examples include confirmation of translation, reading-frame determination, identification of gene and exon boundaries, evidence for post-translational processing, identification of splice-forms including alternative splicing, and also, prediction of completely novel genes. For proteogenomics to deliver on its promise, however, it must overcome a number of technological hurdles, including speed and accuracy of peptide identification, construction and search of specialized databases, correction of sampling bias, and others. This article reviews the state of the art of the field, focusing on the current successes, and the role of computation in overcoming these challenges. We describe how technological and algorithmic advances have already enabled large-scale proteogenomic studies in many model organisms, including arabidopsis, yeast, fly, and human. We also provide a preview of the field going forward, describing early efforts in tackling the problems of complex gene structures, searching against genomes of related species, and immunoglobulin gene reconstruction.  相似文献   
55.
Cell walls in commercially important cereals and grasses are characterized by the presence of (1,3;1,4)‐β‐d ‐glucans. These polysaccharides are beneficial constituents of human diets, where they can reduce the risk of hypercholesterolemia, type II diabetes, obesity and colorectal cancer. The biosynthesis of cell wall (1,3;1,4)‐β‐d ‐glucans in the Poaceae is mediated, in part at least, by the cellulose synthase‐like CslF family of genes. Over‐expression of the barley CslF6 gene under the control of an endosperm‐specific oat globulin promoter results in increases of more than 80% in (1,3;1,4)‐β‐d ‐glucan content in grain of transgenic barley. Analyses of (1,3;1,4)‐β‐d ‐glucan fine structure indicate that individual CslF enzymes might direct the synthesis of (1,3;1,4)‐β‐d ‐glucans with different structures. When expression of the CslF6 transgene is driven by the Pro35S promoter, the transgenic lines have up to sixfold higher levels of (1,3;1,4)‐β‐d ‐glucan in leaves, but similar levels as controls in the grain. Some transgenic lines of Pro35S:CslF4 also show increased levels of (1,3;1,4)‐β‐d ‐glucans in grain, but not in leaves. Thus, the effects of CslF genes on (1,3;1,4)‐β‐d ‐glucan levels are dependent not only on the promoter used, but also on the specific member of the CslF gene family that is inserted into the transgenic barley lines. Altering (1,3;1,4)‐β‐d ‐glucan levels in grain and vegetative tissues will have potential applications in human health, where (1,3;1,4)‐β‐d ‐glucans contribute to dietary fibre, and in tailoring the composition of biomass cell walls for the production of bioethanol from cereal crop residues and grasses.  相似文献   
56.
The high level of escapes from Atlantic salmon farms, up to two million fishes per year in the North Atlantic, has raised concern about the potential impact on wild populations. We report on a two-generation experiment examining the estimated lifetime successes, relative to wild natives, of farm, F(1) and F(2) hybrids and BC(1) backcrosses to wild and farm salmon. Offspring of farm and "hybrids" (i.e. all F(1), F(2) and BC(1) groups) showed reduced survival compared with wild salmon but grew faster as juveniles and displaced wild parr, which as a group were significantly smaller. Where suitable habitat for these emigrant parr is absent, this competition would result in reduced wild smolt production. In the experimental conditions, where emigrants survived downstream, the relative estimated lifetime success ranged from 2% (farm) to 89% (BC(1) wild) of that of wild salmon, indicating additive genetic variation for survival. Wild salmon primarily returned to fresh water after one sea winter (1SW) but farm and 'hybrids' produced proportionately more 2SW salmon. However, lower overall survival means that this would result in reduced recruitment despite increased 2SW fecundity. We thus demonstrate that interaction of farm with wild salmon results in lowered fitness, with repeated escapes causing cumulative fitness depression and potentially an extinction vortex in vulnerable populations.  相似文献   
57.
Autologous c-kit+ cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.  相似文献   
58.
59.
60.
Pleistocene aridification in central North America caused many temperate forest-associated vertebrates to split into eastern and western lineages. Such divisions can be cryptic when Holocene expansions have closed the gaps between once-disjunct ranges or when local morphological variation obscures deeper regional divergences. We investigated such cryptic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in the world. We also investigated the phylogeography of this species and its diminutive relative, the island fox (U. littoralis), in California. The California Floristic Province was a significant source of Pleistocene diversification for a wide range of taxa and, we hypothesized, for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray foxes from the southeastern and southwestern United States and 11 island foxes from three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome b gene between eastern and western foxes and used coalescent simulations to date the divergence to approximately 500,000 years before present (YBP), which is comparable to that between recognized sister species within the Canidae. Gray fox samples collected from throughout California exhibited high haplotype diversity, phylogeographic structure, and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis also indicated an earlier population increase dating to the early Wisconsin glaciation (~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP). Together these findings support California’s role as a long-term Pleistocene refugium for western Urocyon. Lastly, based both on our results and re-interpretation of those of another study, we conclude that island foxes of the Channel Islands trace their origins to at least 3 distinct female founders from the mainland rather than to a single matriline, as previously suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号