首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2417篇
  免费   226篇
  2023年   21篇
  2022年   51篇
  2021年   90篇
  2020年   48篇
  2019年   59篇
  2018年   68篇
  2017年   53篇
  2016年   94篇
  2015年   182篇
  2014年   179篇
  2013年   181篇
  2012年   232篇
  2011年   208篇
  2010年   136篇
  2009年   105篇
  2008年   146篇
  2007年   130篇
  2006年   107篇
  2005年   103篇
  2004年   103篇
  2003年   82篇
  2002年   81篇
  2001年   12篇
  2000年   13篇
  1999年   10篇
  1998年   10篇
  1997年   15篇
  1996年   9篇
  1995年   9篇
  1994年   6篇
  1993年   8篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1984年   3篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1971年   6篇
  1969年   4篇
  1948年   2篇
  1941年   2篇
  1915年   2篇
排序方式: 共有2643条查询结果,搜索用时 15 毫秒
121.
The Menkes protein (MNK) and Wilson protein (WND) are transmembrane, CPX-type Cu-ATPases with six metal binding sites (MBSs) in the N-terminal region containing the motif GMXCXXC. In cells cultured in low copper concentration MNK and WND localize to the transGolgi network but in high copper relocalize either to the plasma membrane (MNK) or a vesicular compartment (WND). In this paper we investigate the role of the MBSs in Cu-transport and trafficking. The copper transport activity of MBS mutants of MNK was determined by their ability to complement a strain of Saccharomyces cerevisiae deficient in CCC2 (ccc2), the yeast MNK/WND homologue. Mutants (CXXC to SXXS) of MBS1, MBS6, and MBSs1-3 were able to complement ccc2 while mutants of MBS4-6, MBS5-6 and all six MBS inactivated the protein. Each of the inactive mutants also failed to display Cu-induced trafficking suggesting a correlation between trafficking and transport activity. A similar correlation was found with mutants of MNK in which various MBSs were deleted, but two constructs with deletion of MBS5-6 were unable to traffic despite retaining 25% of copper transport activity. Chimeras in which the N-terminal MBSs of MNK were replaced with the corresponding MBSs of WND were used to investigate the region of the molecules that is responsible for the difference in Cu-trafficking of MNK and WND. The chimera which included the complete WND N-terminus localized to a vesicular compartment, similar to WND in elevated copper. Deletions of various MBSs of the WND N-terminus in the chimera indicate that a targeting signal in the region of MBS6 directs either WND/MNK or WND to a vesicular compartment of the cell.  相似文献   
122.
Bi-allelic-inactivating mutations of the VHL tumor suppressor gene are found in the majority of clear cell renal cell carcinomas (VHL(-/-) RCC). VHL(-/-) RCC cells overproduce hypoxia-inducible genes as a consequence of constitutive, oxygen-independent activation of hypoxia inducible factor (HIF). While HIF activation explains the highly vascularized nature of VHL loss lesions, the relative role of HIF in oncogenesis and loss of growth control remains unknown. Here, we report that HIF plays a central role in promoting unregulated growth of VHL(-/-) RCC cells by activating the transforming growth factor-alpha (TGF-alpha)/epidermal growth factor receptor (EGF-R) pathway. Dominant-negative HIF and enzymatic inhibition of EGF-R were equally efficient at abolishing EGF-R activation and serum-independent growth of VHL(-/-) RCC cells. TGF-alpha is the only known EGF-R ligand that has a VHL-dependent expression profile and its overexpression by VHL(-/-) RCC cells is a direct consequence of HIF activation. In contrast to TGF-alpha, other HIF targets, including vascular endothelial growth factor (VEGF), were unable to stimulate serum-independent growth of VHL(-/-) RCC cells. VHL(-/-) RCC cells expressing reintroduced type 2C mutants of VHL, and which retain the ability to degrade HIF, fail to overproduce TGF-alpha and proliferate in serum-free media. These data link HIF with the overproduction of a bona fide renal cell mitogen leading to activation of a pathway involved in growth of renal cancer cells. Moreover, our results suggest that HIF might be involved in oncogenesis to a much higher extent than previously appreciated.  相似文献   
123.
Proline racemase catalyzes the interconversion of L- and D-proline enantiomers and has to date been described in only two species. Originally found in the bacterium Clostridium sticklandii, it contains cysteine residues in the active site and does not require co-factors or other known coenzymes. We recently described the first eukaryotic amino acid (proline) racemase, after isolation and cloning of a gene from the pathogenic human parasite Trypanosoma cruzi. Although this enzyme is intracellularly located in replicative non-infective forms of T. cruzi, membrane-bound and secreted forms of the enzyme are present upon differentiation of the parasite into non-dividing infective forms. The secreted form of proline racemase is a potent host B-cell mitogen supporting parasite evasion of specific immune responses. Here we describe that the TcPRAC genes in T. cruzi encode functional intracellular or secreted versions of the enzyme exhibiting distinct kinetic properties that may be relevant for their relative catalytic efficiency. Although the Km of the enzyme isoforms were of a similar order of magnitude (29-75 mM), Vmax varied between 2 x 10(-4 )and 5.3 x 10(-5) mol of L-proline/s/0.125 microM of homodimeric recombinant protein. Studies with the enzyme-specific inhibitor and abrogation of enzymatic activity by site-directed mutagenesis of the active site Cys330 residue reinforced the potential of proline racemase as a critical target for drug development against Chagas' disease. Finally, we propose a protein signature for proline racemases and suggest that the enzyme is present in several other pathogenic and non-pathogenic bacterial genomes of medical and agricultural interest, yet absent in mammalian host, suggesting that inhibition of proline racemases may have therapeutic potential.  相似文献   
124.
This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.  相似文献   
125.
126.
127.
OBJECTIVE: To evaluate the significance of histiocytes on normal cervical smears from postmenopausal women and correlate them with endometrial pathology. STUDY DESIGN: Histiocytes were classified into three types. The clinical history was obtained from cytologic and surgical reports. RESULTS: Among 108 cervical smears, 13 had large, foamy histiocytes (type A), 88 had histiocytes resembling superficial endometrial stromal cells (type B), and 7 had variably sized histiocytes alone or in association with inflammatory or multinucleated cells (type C). Endometrial pathology was identified in 13 patients (12.0%): 4/13 with type A histiocytes (2 endometrial adenocarcinomas, 2 endometrial polyps), 8/88 with type B histiocytes (8 endometrial polyps) and 1/7 with type C histiocytes (endometrial polyp). Among 70 patients with no clinical indications for endometrial sampling except for the presence of histiocytes, 4 demonstrated endometrial pathology (all endometrial polyps). In contrast, endometrial pathology was identified in 9/38 with clinical indications for endometrial sampling. Among the 13 patients with endometrial pathology, 9 had a significant clinical history (sensitivity of 69.2%), and 4 had histiocytes as the only indication for endometrial biopsy (sensitivity of 30.8%). CONCLUSION: A significant clinical history is more predictive of endometrial pathology and outweighs the significance of histiocytes as an indication for endometrial biopsy.  相似文献   
128.
Excellular hemoglobin is an extremely active oxidant of low-density lipoproteins (LDL), a phenomenon explained so far by different mechanisms. In this study, we analyzed the mechanism of met-hemoglobin oxidability by comparing its mode of operation with other hemoproteins, met-myoglobin and horseradish peroxidase (HRP) or with free hemin. The kinetics of met-hemoglobin activity toward LDL lipids and protein differed from that of met-myoglobin and HRP, both quantitatively and qualitatively. Those differences were further clarified by analyzing heme transfer from the above-mentioned hemoproteins to LDL. It appeared that met-hemoglobin transferred most of its hemin to LDL, and the presence of H(2)O(2) accelerated the process. In contrast, met-myoglobin partially released hemin, but only in the presence of H(2)O(2), while HRP could not transfer heme at all. The minor amount of hemin transferred from met-myoglobin to LDL sufficed to trigger ApoB oxidation, forming covalent aggregates via inter-bityrosines. This indicated that heme bound to high affinity site(s) is responsible for oxidation. LDL components providing the sites were analyzed by binding heme-CO monomers to LDL. Soret spectra revealed that the high affinity site of monomeric hemin is located on the LDL protein, ApoB. The complex heme-CO-ApoB underwent instantaneous oxidation to hemin-ApoB, and the bound hemin then slowly disintegrated in conjunction with LDL oxidation. Hemopexin prevented LDL oxidation by trapping hemoprotein transferable heme. We concluded that met-hemoglobin exerts its oxidative activity on LDL via transfer of heme, which serves as a vehicle for iron insertion into the LDL protein, leading to formation of atherogenic LDL aggregates.  相似文献   
129.
The potential for PHB (poly-beta-hydroxybutyrate) to serve as the electron donor for effective simultaneous nitrification and denitrification (SND) was investigated in a 2-L sequencing batch reactor (SBR) using a mixed culture and acetate as the organic substrate. During the feast period (i.e., acetate present), heterotrophic respiration activity was high and nitrification was prevented due to the inability of nitrifying bacteria to compete with heterotrophs for oxygen. Once acetate was depleted the oxidation rate of PHB was up to 6 times slower than that of soluble acetate and nitrification could proceed due to the decreased competition for oxygen. The slow nature of PHB degradation meant that it was an effective substrate for SND, as it was oxidised at a similar rate to ammonium and was therefore available for SND throughout the entire aerobic period. The percentage of nitrogen removed via SND increased at lower DO concentrations during the famine period, with up to 78% SND achieved at a DO concentration of 0.5 mg L(-1). However, the increased percentage of SND at a low DO concentration was compromised by a 2-times slower rate of nitrogen removal. A moderate DO concentration of 1 mg L(-1) was optimal for both SND efficiency (61%) and rate (4.4 mmol N x Cmol x(-1) x h(-1)). Electron flux analysis showed that the period of highest SND activity occurred during the first hour of the aerobic famine period, when the specific oxygen uptake rate (SOUR) was highest. It is postulated that a high SOUR due to NH(4) (+) and PHB oxidation decreases oxygen penetration into the floc, creating larger zones for anoxic denitrification. The accumulation of nitrate towards the end of the SND period showed that SND was finally limited by the rate of denitrification. As PHB degradation was found to follow first-order kinetics (df(PHB)/dt = -0.19 x f(PHB)), higher PHB concentrations would be expected to drive SND faster by increasing the availability rate of reducing power and reducing penetration of oxygen into the floc, due to the corresponding increased SOUR. Process control techniques to accumulate higher internal PHB concentrations to improve PHB-driven SND are discussed.  相似文献   
130.
Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can process a common spontaneous lesion(s), with mutational inactivation of any pathway increasing the burden on the remaining pathways. In this study, we examine the consequences of simultaneously compromising three or more of these pathways. Although the presence of a functional BER pathway alone is able to support haploid growth, retention of the NER, REC, or PRR pathway alone is not, indicating that BER is the key damage resistance pathway in yeast and may be responsible for the removal of the majority of either spontaneous DNA damage or specifically those lesions that are potentially lethal. In the diploid state, functional BER, NER, or REC alone can support growth, while PRR alone is insufficient for growth. In diploids, the presence of PRR alone may confer a lethal mutation load or, alternatively, PRR alone may be insufficient to deal with potentially lethal, replication-blocking lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号