首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4752篇
  免费   330篇
  国内免费   5篇
  5087篇
  2024年   3篇
  2023年   40篇
  2022年   79篇
  2021年   156篇
  2020年   87篇
  2019年   114篇
  2018年   167篇
  2017年   116篇
  2016年   187篇
  2015年   269篇
  2014年   285篇
  2013年   347篇
  2012年   435篇
  2011年   466篇
  2010年   286篇
  2009年   227篇
  2008年   260篇
  2007年   331篇
  2006年   253篇
  2005年   230篇
  2004年   219篇
  2003年   186篇
  2002年   152篇
  2001年   34篇
  2000年   16篇
  1999年   14篇
  1998年   28篇
  1997年   18篇
  1996年   18篇
  1995年   6篇
  1994年   10篇
  1993年   7篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有5087条查询结果,搜索用时 0 毫秒
211.
Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-beta-ocimene, derived from geranyl diphosphate, in addition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-beta-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-beta-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-beta-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-beta-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx(8)W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production.  相似文献   
212.
Common features in the time-course of expansion of leaves which considerably differed in final area, due to phytomer position, growing conditions and genotype, were identified. Leaf development consisted of two phases of exponential growth, followed by a third phase of continuous decrease of the relative expansion rate. The rate and the duration of the first exponential phase were common to all phytomers, growing conditions and genotypes. Leaves differed in the rate and the duration of the second exponential phase. The decrease of the relative expansion rate during the third phase depended on neither genotype nor growing conditions. It was phytomer-dependent and was deduced from the rate of the second phase via a parameter common to all cases studied. Differences in final leaf area among growing conditions were linked to different expansion rates during the second exponential phase. The duration of the phases at any given phytomer position was the same for the two hybrids in different growing conditions. The dates of developmental events (initiation, end of the two exponential phases, full expansion), and the rate of the second exponential phase, were related to phytomer position, defining a strict pattern of leaf development at the whole plant level. Using this framework simplified the analysis of the response of leaf expansion to genotype and environment.  相似文献   
213.
The nematode parasites Wuchereria bancrofti, Brugia malayi, and B. timori cause a disease in humans known as lymphatic filariasis, which afflicts approximately 120 million people worldwide. The parasites enter the human host from the mosquito either as L3 or as infective larvae and subsequently differentiate through 2 molts. In this article, we show that B. malayi depends on an exogenous source of vitamin C to complete the L3 to L4 molt, a critical morphogenic step in its life cycle. Brugia malayi apparently belongs to a small group of living organisms that depend on an exogenous source of vitamin C. This group includes only primates (including man) and guinea pigs among mammals.  相似文献   
214.
Umbraviruses are different from most other viruses in that they do not encode a conventional capsid protein (CP); therefore, no recognizable virus particles are formed in infected plants. Their lack of a CP is compensated for by the ORF3 protein, which fulfils functions that are provided by the CPs of other viruses, such as protection and long-distance movement of viral RNA. When the Groundnut rosette virus (GRV) ORF3 protein was expressed from Tobacco mosaic virus (TMV) in place of the TMV CP [TMV(ORF3)], in infected cells it interacted with the TMV RNA to form filamentous ribonucleoprotein (RNP) particles that had elements of helical structure but were not as uniform as classical virions. These RNP particles were observed in amorphous inclusions in the cytoplasm, where they were embedded within an electron-dense matrix material. The inclusions were detected in all types of cells and were abundant in phloem-associated cells, in particular companion cells and immature sieve elements. RNP-containing complexes similar in appearance to the inclusions were isolated from plants infected with TMV(ORF3) or with GRV itself. In vitro, the ORF3 protein formed oligomers and bound RNA in a manner consistent with its role in the formation of RNP complexes. It is suggested that the cytoplasmic RNP complexes formed by the ORF3 protein serve to protect viral RNA and may be the form in which it moves through the phloem. Thus, the RNP particles detected here represent a novel structure which may be used by umbraviruses as an alternative to classical virions.  相似文献   
215.
Peroxynitrite, a strong oxidant formed intravascularly in vivo, can diffuse onto erythrocytes and be largely consumed via a fast reaction (2 x 10(4) m(-1) s(-1)) with oxyhemoglobin. The reaction mechanism of peroxynitrite with oxyhemoglobin that results in the formation of methemoglobin remains to be elucidated. In this work, we studied the reaction under biologically relevant conditions using millimolar oxyhemoglobin concentrations and a stoichiometric excess of oxyhemoglobin over peroxynitrite. The results support a reaction mechanism that involves the net one-electron oxidation of the ferrous heme, isomerization of peroxynitrite to nitrate, and production of superoxide radical and hydrogen peroxide. Homolytic cleavage of peroxynitrite within the heme iron allows the formation of ferrylhemoglobin in approximately 10% yields, which can decay to methemoglobin at the expense of reducing equivalents of the globin moiety. Indeed, spin-trapping studies using 2-methyl-2-nitroso propane and 5,5 dimethyl-1-pyrroline-N-oxide (DMPO) demonstrated the formation of tyrosyl- and cysteinyl-derived radicals. DMPO also inhibited covalently linked dimerization products and led to the formation of DMPO-hemoglobin adducts. Hemoglobin nitration was not observed unless an excess of peroxynitrite over oxyhemoglobin was used, in agreement with a marginal formation of nitrogen dioxide. The results obtained support a role of oxyhemoglobin as a relevant intravascular sink of peroxynitrite.  相似文献   
216.
Oligomerization of soluble Fas antigen induces its cytotoxicity   总被引:6,自引:0,他引:6  
Soluble Fas antigen can protect cells against Fas-mediated apoptosis. High level soluble Fas antigen characteristic for blood of patients with autoimmune disease or cancer is believed to prevent the elimination of autoimmune lymphocytes or tumor cells. Here we first report that human recombinant FasDeltaTM, i.e. soluble Fas generated by alternative splicing of the intact exon 6, is capable of inducing death of transformed cells by "reverse" apoptotic signaling via transmembrane Fas ligand. FasDeltaTM, as well as transmembrane Fas antigen, can be either monomeric or oligomeric, and both its forms are efficient in blocking Fas-mediated apoptosis, although the cytotoxic activity is exhibited solely by the latter. An in vivo analysis of soluble Fas antigen showed that unlike in healthy controls, nearly the total FasDeltaTM present in sera of rheumatoid arthritis patients was oligomeric. This resulted in suppression of cell proliferation in the experimental sera and in its promotion in controls. Thus, oligomerization/depolymerization of soluble Fas antigen can regulate its activity and contribute to the pathogenesis of autoimmune diseases and cancer.  相似文献   
217.
Floral volatiles, which are small and generally water-insoluble, must move from their intracellular sites of synthesis through the outermost cuticle membrane before release from the flower surface. To determine whether petal cuticle might influence volatile emissions, we performed the first analysis of petal cuticle development and its association with the emission of flower volatiles using Antirrhinum majus L. (snapdragon) as a model system. Petal cuticular wax amount and composition, cuticle thickness and ultrastructure, and the amounts of internal and emitted methylbenzoate (the major snapdragon floral scent compound) were examined during 12 days, from flower opening to senescence. Normal ( n -) alkanes were found to be the major wax class of snapdragon petals (29.0% to 34.3%) throughout the 12 days examined. Besides n -alkanes, snapdragon petals possessed significant amounts of methyl branched alkanes (23.6–27.8%) and hydroxy esters (12.0–14.0%). Hydroxy esters have not been previously reported in plants. Changes in amount of methylbenzoate inside the petals followed closely with levels of methylbenzoate emission, suggesting that snapdragon petal cuticle may provide little diffusive resistance to volatile emissions. Moreover, clear associations did not exist between methylbenzoate emission and the cuticle properties examined during development. Nevertheless, the unique wax composition of snapdragon petal cuticles shows similarities with those of other highly permeable cuticles, suggesting an adaptation that could permit rapid volatile emission by scented flowers.  相似文献   
218.
Here we describe a homogeneous assay for biotin based on bioluminescence resonance energy transfer (BRET) between aequorin and enhanced green fluorescent protein (EGFP). The fusions of aequorin with streptavidin (SAV) and EGFP with biotin carboxyl carrier protein (BCCP) were purified after expression of the corresponding genes in Escherichia coli cells. Association of SAV-aequorin and BCCP-EGFP fusions was followed by BRET between aequorin (donor) and EGFP (acceptor), resulting in significantly increasing 510 nm and decreasing 470 nm bioluminescence intensity. It was shown that free biotin inhibited BRET due to its competition with BCCP-EGFP for binding to SAV-aequorin. These properties were exploited to demonstrate competitive homogeneous BRET assay for biotin.  相似文献   
219.
Obelin from the hydroid Obelia longissima and aequorin are members of a subfamily of Ca(2+)-regulated photoproteins that is a part of the larger EF-hand calcium binding protein family. On the addition of Ca(2+), obelin generates a blue bioluminescence emission (lambda(max) = 485 nm) as the result of the oxidative decarboxylation of the bound substrate, coelenterazine. The W92F obelin mutant is noteworthy because of the unusually high speed with which it responds to sudden changes of [Ca(2+)] and because it emits violet light rather than blue due to a prominent band with lambda(max) = 405 nm. Increase of pH in the range from 5.5 to 8.5 and using D(2)O both diminish the contribution of the 405 nm band, indicating that excited state proton transfer is involved. Fluorescence model studies have suggested the origin of the 485 nm emission as the excited state of an anion of coelenteramide, the bioluminescence reaction product, and 405 nm from the excited neutral state. Assuming that the dimensions of the substrate binding cavity do not change during the excited state formation, a His22 residue within hydrogen bonding distance to the 6-(p-hydroxy)-phenyl group of the excited coelenteramide is a likely candidate for accepting the phenol proton to produce an ion-pair excited state, in support of recent suggestions for the bioluminescence emitting state. The proton transfer could be impeded by removal of the Trp92 H-bond, resulting in strong enhancement of a 405 nm band giving the violet color of bioluminescence. Comparative analysis of 3D structures of the wild-type (WT) and W92F obelins reveals that there are structural displacements of certain key Ca(2+)-ligating residues in the loops of the two C-terminal EF hands as well as clear differences in hydrogen bond networks in W92F. For instance, the hydrogen bond between the side-chain oxygen atom of Asp169 and the main-chain nitrogen of Arg112 binds together the incoming alpha-helix of loop III and the exiting alpha-helix of loop IV in WT, providing probably concerted changes in these EF hands on calcium binding. But this linkage is not found in W92F obelin. These differences apparently do not change the overall affinity to calcium of W92F obelin but may account for the kinetic differences between the WT and mutant obelins. From analysis of the hydrogen bond network in the coelenterazine binding cavity, it is proposed that the trigger for bioluminescence reaction in these Ca(2+)-regulated photoproteins may be a shift of the hydrogen bond donor-acceptor separations around the coelenterazine-2-hydroperoxy substrate, initiated by small spatial adjustment of the exiting alpha-helix of loop IV.  相似文献   
220.
Insect neurons are individually identifiable and have been used successfully to study principles of the formation and function of neuronal circuits. In the fruitfly Drosophila, studies on identifiable neurons can be combined with efficient genetic approaches. However, to capitalise on this potential for studies of circuit formation in the CNS of Drosophila embryos or larvae, we need to identify pre- and postsynaptic elements of such circuits and describe the neuropilar territories they occupy. Here, we present a strategy for neurite mapping, using a set of evenly distributed landmarks labelled by commercially available anti-Fasciclin2 antibodies which remain comparatively constant between specimens and over developmental time. By applying this procedure to neurites labelled by three Gal4 lines, we show that neuritic territories are established in the embryo and maintained throughout larval life, although the complexity of neuritic arborisations increases during this period. Using additional immunostainings or dye fills, we can assign Gal4-targeted neurites to individual neurons and characterise them further as a reference for future experiments on circuit formation. Using the Fasciclin2-based mapping procedure as a standard (e.g., in a common database) would facilitate studies on the functional architecture of the neuropile and the identification of candiate circuit elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号