首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4795篇
  免费   335篇
  国内免费   5篇
  2024年   3篇
  2023年   40篇
  2022年   79篇
  2021年   156篇
  2020年   89篇
  2019年   115篇
  2018年   167篇
  2017年   118篇
  2016年   189篇
  2015年   271篇
  2014年   286篇
  2013年   348篇
  2012年   437篇
  2011年   470篇
  2010年   288篇
  2009年   227篇
  2008年   263篇
  2007年   333篇
  2006年   253篇
  2005年   231篇
  2004年   219篇
  2003年   188篇
  2002年   152篇
  2001年   39篇
  2000年   19篇
  1999年   15篇
  1998年   29篇
  1997年   19篇
  1996年   19篇
  1995年   6篇
  1994年   11篇
  1993年   8篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有5135条查询结果,搜索用时 31 毫秒
161.
162.
Taxol is an anticancer drug that triggers apoptosis in a wide spectrum of cancers such as ovarian, breast, lung, head and neck, and bladder carcinoma by both caspase-dependent and -independent apoptosis mechanisms. However, the exact signaling pathways involved in taxol-induced apoptosis strongly depend on the cellular background and they are not completely established yet. In this study we demonstrate that taxol induces caspase-3-independent apoptosis in NIH3T3 cells by a calpain-mediated mechanism. Taxol treatment produced changes in the mitochondrial membrane potential (Delta Psi m) which could be responsible of Ca(2+) release from the mitochondria and the consequent calpain activation. Interestingly, we show that calpain produced proteolysis of caspase-3 and demonstrate that, accordingly, calpain inhibition increased taxol-induced apoptosis. In addition, we reveal that poly (ADP-ribose) polymerase (PARP) was processed by calpain in taxol-treated cells and by caspase-3 after calpain inhibition. In conclusion, these results demonstrate for the first time that calpain could play an important role modulating taxol-induced apoptosis. Further studies are needed to address the potentiality of inducing apoptosis by a combined use of taxol and calpain inhibitors in cells with increased calpain activity.  相似文献   
163.
The effect of tyrosine nitration on mammalian GS activity and stability was studied in vitro. Peroxynitrite at a concentration of 5 micro mol/l produced tyrosine nitration and inactivation of GS, whereas 50 micro mol/l peroxynitrite additionally increased S-nitrosylation and carbonylation and degradation of GS by the 20S proteasome. (-)Epicatechin completely prevented both, tyrosine nitration and inactivation of GS by peroxynitrite (5 micro mol/l). Further, a putative "denitrase" activity restored the activity of peroxynitrite (5 micro mol/l)-treated GS. The data point to a potential regulation of GS activity by a reversible tyrosine nitration. High levels of oxidative stress may irreversibly damage and predispose the enzyme to proteasomal degradation.  相似文献   
164.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   
165.
Very long-chain (C24 to C34) polyunsaturated fatty acids (VLCPUFA) are important constituents of sphingomyelin (SM) and ceramide (Cer) in testicular germ cells. In the present paper we focused on the SM and Cer and their fatty acids in spermatozoa and their main regions, heads and tails. In bull and ram spermatozoa, SM was the third most abundant phospholipid and VLCPUFA were the major acyl groups ( approximately 70%) of SM and Cer. In rat epididymal spermatozoa the SM/Cer ratio was low in the absence of and could be maintained high in the presence of the cation chelator EDTA, added to the medium used for sperm isolation. This fact points to the occurrence of an active divalent cation-dependent sphingomyelinase. Bull and rat sperm had an uneven head-tail distribution of phospholipid, with virtually all the VLCPUFA-rich SM located at the head, the lower SM content in the rat being determined by the lower sperm head/tail size ratio. Most of the SM from bull sperm heads was readily solubilized with 1% Triton X-100 at 4 degrees C. The detergent-soluble SM fraction was richer in VLCPUFA than the nonsoluble fraction and richer in saturated fatty acids. Cer was produced at the expense of SM, thus decreasing severalfold the SM/Cer ratio in rat spermatozoa incubated for 2 h in presence of the sperm-capacitating agents, calcium, bicarbonate, and albumin. The generation of Cer from SM in the sperm head surface may be an early step among the biochemical and biophysical changes known to take place in the spermatozoon in the physiological events preceding fertilization.  相似文献   
166.
Atg4C/autophagin-3 is a member of a family of cysteine proteinases proposed to be involved in the processing and delipidation of the mammalian orthologues of yeast Atg8, an essential component of an ubiquitin-like modification system required for execution of autophagy. To date, the in vivo role of the different members of this family of proteinases remains unclear. To gain further insights into the functional relevance of Atg4 orthologues, we have generated mutant mice deficient in Atg4C/autophagin-3. These mice are viable and fertile and do not display any obvious abnormalities, indicating that they are able to develop the autophagic response required during the early neonatal period. However, Atg4C-/--starved mice show a decreased autophagic activity in the diaphragm as assessed by immunoblotting studies and by fluorescence microscopic analysis of samples from Atg4C-/- GFP-LC3 transgenic mice. In addition, animals deficient in Atg4C show an increased susceptibility to develop fibrosarcomas induced by chemical carcinogens. Based on these results, we propose that Atg4C is not essential for autophagy development under normal conditions but is required for a proper autophagic response under stressful conditions such as prolonged starvation. We also propose that this enzyme could play an in vivo role in events associated with tumor progression.  相似文献   
167.
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes able to hydrolyze and inactivate most beta-lactam antibiotics. The large diversity of active site structures and metal content among MbetaLs from different sources has limited the design of a pan-MbetaL inhibitor. Here we report the biochemical and biophysical characterization of a novel MbetaL, GOB-18, from a clinical isolate of a Gram-negative opportunistic pathogen, Elizabethkingia meningoseptica. Different spectroscopic techniques, three-dimensional modeling, and mutagenesis experiments, reveal that the Zn(II) ion is bound to Asp120, His121, His263, and a solvent molecule, i.e. in the canonical Zn2 site of dinuclear MbetaLs. Contrasting all other related MbetaLs, GOB-18 is fully active against a broad range of beta-lactam substrates using a single Zn(II) ion in this site. These data further enlarge the structural diversity of MbetaLs.  相似文献   
168.
The main goal of this study was to evaluate if specific cytokine expression in the NK/Ly lymphoma cells might be involved in development of intoxication in the tumor-bearing animals. RT-PCR analysis was used to study an expression of mRNA coding for IL-1α, IL-6, TNF-α, TNF-β and VEGF. ELISA was used to evaluate IL-6 and IFN-γ concentration in the ascitic fluid. Cytomorphological investigation of tumor cells was done after standard Romanovsky-Giemsa staining, and chromatin staining was performed with hematoxyline and neutral red. Lactate dehydrogenase and acid phosphatase release from tumor cells was estimated. It was revealed that the level of mRNA coding for VEGF and IL-6 was significant in the lymphoma cells. The level of VEGF mRNA was initially high and did not change during tumor progression, while the level of expression of IL6 mRNA was low at the initial stages of tumor growth and markedly increased (up to 5-fold) at the terminal stages. The obtained data on IL-6 mRNA expression were confirmed by ELISA, which showed more than 6-fold increase (from 90 to 570 pg/ml) in the IL-6 concentration in the ascitic fluid at late stages of NK/Ly tumor development. On the contrary to IL-6, concentration of IFN-γ in the ascitic fluid was very high at early stages of tumor development (1,000 pg/ml) and it markedly decreased (up to 30-fold, 30 pg/ml) at the terminal stages of tumor development. The high levels of IL-6 mRNA in tumor cells and IL-6 content in extracellular medium correlated with cell deterioration, as revealed by cytomorphologic study and the release of intracellular enzymes into extracellular medium. We suggest that an enhanced production and release of IL-6 by lymphoma cells can cause intoxication and exhaustion of the organism observed at terminal stages of tumor growth.  相似文献   
169.
In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号