首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   15篇
  2010年   4篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1999年   3篇
  1995年   2篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
21.
Th17 cells have recently emerged as a major player in inflammatory and autoimmune diseases via the production of pro-inflammatory cytokines IL-17, IL-17F, and IL-22. The differentiation of Th17 cells and the associated cytokine production is directly controlled by RORγt. Here we show that ursolic acid (UA), a small molecule present in herbal medicine, selectively and effectively inhibits the function of RORγt, resulting in greatly decreased IL-17 expression in both developing and differentiated Th17 cells. In addition, treatment with UA ameliorated experimental autoimmune encephalomyelitis. The results thus suggest UA as a valuable drug candidate or leading compound for developing treatments of Th17-mediated inflammatory diseases and cancer.  相似文献   
22.
Autophagy plays a key role in the pathophysiology of schizophrenia as manifested by a 40% decrease in BECN1/Beclin 1 mRNA in postmortem hippocampal tissues relative to controls. This decrease was coupled with the deregulation of the essential ADNP (activity-dependent neuroprotector homeobox), a binding partner of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) another major constituent of autophagy. The drug candidate NAP (davunetide), a peptide fragment from ADNP, enhanced the ADNP-LC3B interaction. Parallel genetic studies have linked allelic variation in the gene encoding MAP6/STOP (microtubule-associated protein 6) to schizophrenia, along with altered MAP6/STOP protein expression in the schizophrenic brain and schizophrenic-like behaviors in Map6-deficient mice. In this study, for the first time, we reveal significant decreases in hippocampal Becn1 mRNA and reversal by NAP but not by the antipsychotic clozapine (CLZ) in Map6-deficient (Map6+/−) mice. Normalization of Becn1 expression by NAP was coupled with behavioral protection against hyperlocomotion and cognitive deficits measured in the object recognition test. CLZ reduced hyperlocomotion below control levels and did not significantly affect object recognition. The combination of CLZ and NAP resulted in normalized outcome behaviors. Phase II clinical studies have shown NAP-dependent augmentation of functional activities of daily living coupled with brain protection. The current studies provide a new mechanistic pathway and a novel avenue for drug development.  相似文献   
23.
In melanoma, the presence of promoter related hypermethylation has previously been reported, however, no methylation-based distinction has been drawn among the diverse melanoma subtypes. Here, we investigated DNA methylation changes associated with melanoma progression and links between methylation patterns and other types of somatic alterations, including the most frequent mutations and DNA copy number changes. Our results revealed that the methylome, presenting in early stage samples and associated with the BRAFV600E mutation, gradually decreased in the medium and late stages of the disease. An inverse relationship among the other predefined groups and promoter methylation was also revealed except for histologic subtype, whereas the more aggressive, nodular subtype melanomas exhibited hypermethylation as well. The Breslow thickness, which is a continuous variable, allowed for the most precise insight into how promoter methylation decreases from stage to stage. Integrating our methylation results with a high-throughput copy number alteration dataset, local correlations were detected in the MYB and EYA4 genes. With regard to the effects of DNA hypermethylation on melanoma patients'' survival, correcting for clinical cofounders, only the KIT gene was associated with a lower overall survival rate. In this study, we demonstrate the strong influence of promoter localized DNA methylation changes on melanoma initiation and show how hypermethylation decreases in melanomas associated with less favourable clinical outcomes. Furthermore, we establish the methylation pattern as part of an integrated apparatus of somatic DNA alterations.  相似文献   
24.
Recurrent pregnancy loss is usually defined as the loss of two or more consecutive pregnancies before 20 weeks of gestation, which occurs in approximately 5% of reproductive-aged women. It has been suggested that women with thrombophilia have an increased risk of pregnancy loss and other adverse pregnancy outcomes. Thrombophilia is an important predisposition to blood clot formation and is considered as a significant risk factor for recurrent pregnancy loss. The inherited predisposition to thrombophilia is most often associated with factor V Leiden mutation, prothrombin G20210A mutation, and methylenetetrahydrofolate reductase C677T and A1298C gene variants. The net effect is an increased cleavage of prothrombin to thrombin and excessive blood coagulation. Key Words: Recurrent pregnancy loss, Hereditary thrombophilia, Factor V Leiden mutation  相似文献   
25.
The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20–30?Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.  相似文献   
26.
We developed a method to investigate the effect of ultraviolet-B radiation (UVBR) on the formation of thy-mine dimers in microalgal DNA that can be used for both laboratory and in situ research. Antibody labeling of dimers was followed by a secondary antibody (fluorescein isothiocyanate) staining to allow visualization of DNA damage with flow cytometry or fluorescence microscopy. Thymine dimer-specific fluorescence in nuclear DNA of the marine diatom Cyclotella sp. was linearly related to the UVBR dose. Simultaneous measurements of cellular DNA content showed that the vulnerability of G2 cells to DNA damage did not differ significantly from the vulnerability of G1 cells. The formation and removal of thymine dimers in Cyclotella sp. cells was monitored for 3 consecutive days at two realistic UVBR irradiance levels. Thy-mine dimers were removed within 24 h when exposed to a saturating photosynthetically active radiation intensity following the UVBR treatment. This new method allows the study of UVBR-induced DNA damage on a cell-to-cell basis. It is also feasible for field studies because cells remain intact and can be recognized readily after antibody treatment.  相似文献   
27.
The activation of LFA-1 (lymphocyte function-associated antigen) is a critical event for T cell co-stimulation. The mechanism of LFA-1 activation involves both affinity and avidity regulation, but the role of each in T cell activation remains unclear. We have identified antibodies that recognize and block different affinity states of the mouse LFA-1 I-domain. Monoclonal antibody 2D7 preferentially binds to the low affinity conformation, and this specific binding is abolished when LFA-1 is locked in the high affinity conformation. In contrast, M17/4 can bind both the locked high and low affinity forms of LFA-1. Although both 2D7 and M17/4 are blocking antibodies, 2D7 is significantly less potent than M17/4 in blocking LFA-1-mediated adhesion; thus, blocking high affinity LFA-1 is critical for preventing LFA-1-mediated adhesion. Using these reagents, we investigated whether LFA-1 affinity regulation affects T cell activation. We found that blocking high affinity LFA-1 prevents interleukin-2 production and T cell proliferation, demonstrated by TCR cross-linking and antigen-specific stimulation. Furthermore, there is a differential requirement of high affinity LFA-1 in the activation of CD4+ and CD8+ T cells. Although CD4+ T cell activation depends on both high and low affinity LFA-1, only high affinity LFA-1 provides co-stimulation for CD8+ T cell activation. Together, our data demonstrated that the I-domain of LFA-1 changes to the high affinity state in primary T cells, and high affinity LFA-1 is critical for facilitating T cell activation. This implicates LFA-1 activation as a novel regulatory mechanism for the modulation of T cell activation and proliferation.LFA-1 (lymphocyte function-associated antigen), an integrin family member, is important in regulating leukocyte adhesion and T cell activation (1, 2). LFA-1 consists of the αL (CD11a) and β2 (CD18) heterodimer. The ligands for LFA-1, including intercellular adhesion molecule ICAM3-1, ICAM-2, and ICAM-3, are expressed on antigen-presenting cells (APCs), endothelial cells, and lymphocytes (1). Mice that are deficient in LFA-1 have defects in leukocyte adhesion, lymphocyte proliferation, and tumor rejection (35). Blocking LFA-1 with antibodies can prevent inflammation, autoimmunity, organ graft rejection, and graft versus host disease in human and murine models (610).LFA-1 is constitutively expressed on the surface of leukocytes in an inactive state. Activation of LFA-1 is mediated by inside-out signals from the cytoplasm (1, 11). Subsequently, activated LFA-1 binds to the ligands and transduces outside-in signals back into the cytoplasm that result in cell adhesion and activation (12, 13). The activation of LFA-1 is a critical event in the formation of the immunological synapse, which is important for T cell activation (2, 14, 15). The active state of LFA-1 is regulated by chemokines and the T cell receptor (TCR) through Rap1 signaling (16). LFA-1 ligation lowers the activation threshold and affects polarization in CD4+ T cells (17). Moreover, productive LFA-1 engagement facilitates efficient activation of cytotoxic T lymphocytes and initiates a distinct signal essential for the effector function (1820). Thus, LFA-1 activation is essential for the optimal activation of T cells.The mechanism of LFA-1 activation involves both affinity (conformational changes within the molecule) and avidity (receptor clustering) regulation (2123). The I-domain of the LFA-1 αL subunit is the primary ligand-binding site and has been proposed to change conformation, leading to an increased affinity for ligands (2426). The structural basis of the conformational changes in the I-domain of LFA-1 has been extensively characterized (27). Previously, we have demonstrated that the conformation of the LFA-1 I-domain changes from the low affinity to the high affinity state upon activation. By introducing disulfide bonds into the I-domain, LFA-1 can be locked in either the closed or open conformation, which represents the “low affinity” or “high affinity” state, respectively (28, 29). In addition, we identified antibodies that are sensitive to the affinity changes in the I-domain of human LFA-1 and showed that the activation-dependent epitopes are exposed upon activation (30). This study supports the presence of the high affinity conformation upon LFA-1 activation in cell lines. It has been demonstrated recently that therapeutic antagonists, such as statins, inhibit LFA-1 activation and immune responses by locking LFA-1 in the low affinity state (3134). Furthermore, high affinity LFA-1 has been shown to be important for mediating the adhesion of human T cells (35, 36). Thus, the affinity regulation is a critical step in LFA-1 activation.LFA-1 is a molecule of great importance in the immune system, and its activation state influences the outcome of T cell activation. Our previous data using the activating LFA-1 I-domain-specific antibody MEM83 indicate that avidity and affinity of the integrin can be coupled during activation (37). However, whether affinity or avidity regulation of LFA-1 contributes to T cell activation remains controversial (23, 38, 39). Despite the recent progress suggesting that conformational changes represent a key step in the activation of LFA-1, there are considerable gaps to be filled. When LFA-1 is activated, the subsequent outside-in signaling contributes to T cell activation via immunological synapse and LFA-1-dependent signaling. It is critical to determine whether high affinity LFA-1 participates in the outside-in signaling and affects the cellular activation of T cells. Nevertheless, the rapid and dynamic process of LFA-1 activation has hampered further understanding of the role of high affinity LFA-1 in primary T cell activation. The affinity of LFA-1 for ICAM-1 increases up to 10,000-fold within seconds and involves multiple reversible steps (23). In addition, the activation of LFA-1 regulates both adhesion and activation of T cells, two separate yet closely associated cellular functions. When LFA-1 is constitutively expressed in the active state in mice, immune responses are broadly impaired rather than hyperactivated, suggesting the complexity of affinity regulation (40). Therefore, it is difficult to dissect the mechanisms by which high affinity LFA-1 regulates stepwise activation of T cells in the whole animal system.In the present study, we identified antibodies recognizing and blocking different affinity states of mouse LFA-1. These reagents allowed us to determine the role of affinity regulation in T cell activation. We found that blocking high affinity LFA-1 inhibited IL-2 production and proliferation in T cells. Furthermore, there is a differential requirement of high affinity LFA-1 in antigen-specific activation of CD4+ and CD8+ T cells. The activation of CD4+ T cells depends on both high and low affinity LFA-1. For CD8+ T cell activation, only high affinity LFA-1 provides co-stimulation. Thus, affinity regulation of LFA-1 is critical for the activation and proliferation of naive T cells.  相似文献   
28.

Background

Bacterial colonisation in chronic obstructive pulmonary disease (COPD) contributes to airway inflammation and modulates exacerbations. We assessed risk factors for bacterial colonisation in COPD.

Methods

Patients with stable COPD consecutively recruited over 1 year gave consent to provide a sputum sample for microbiologic analysis. Bronchial colonisation by potentially pathogenic microorganisms (PPMs) was defined as the isolation of PPMs at concentrations of ≥102 colony-forming units (CFU)/mL on quantitative bacterial culture. Colonised patients were divided into high (>105 CFU/mL) or low (<105 CFU/mL) bacterial load.

Results

A total of 119 patients (92.5% men, mean age 68 years, mean forced expiratory volume in one second [FEV1] [% predicted] 46.4%) were evaluated. Bacterial colonisation was demonstrated in 58 (48.7%) patients. Patients with and without bacterial colonisation showed significant differences in smoking history, cough, dyspnoea, COPD exacerbations and hospitalisations in the previous year, and sputum colour. Thirty-six patients (62% of those colonised) had a high bacterial load. More than 80% of the sputum samples with a dark yellow or greenish colour yielded PPMs in culture. In contrast, only 5.9% of white and 44.7% of light yellow sputum samples were positive (P < 0.001). Multivariate analysis showed an increased degree of dyspnoea (odds ratio [OR] = 2.63, 95% confidence interval [CI] 1.53-5.09, P = 0.004) and a darker sputum colour (OR = 4.11, 95% CI 2.30-7.29, P < 0.001) as factors associated with the presence of PPMs in sputum.

Conclusions

Almost half of our population of ambulatory moderate to very severe COPD patients were colonised with PPMs. Patients colonised present more severe dyspnoea, and a darker colour of sputum allows identification of individuals more likely to be colonised.  相似文献   
29.

Background

Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities.

Methodology/Principal Findings

Our novel derivatives of chlorin e6, that is, its amide (compound 2) and boronated amide (compound 5) evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e6 against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 µM of 5 caused rapid (within the initial minutes) necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all) lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3–4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e6 in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers.

Conclusions/Significance

The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are directly associated with membrane permeabilization caused by lipid photodamage.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号