首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   10篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   12篇
  2019年   4篇
  2018年   10篇
  2017年   11篇
  2016年   11篇
  2015年   6篇
  2014年   7篇
  2013年   10篇
  2012年   6篇
  2011年   10篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
排序方式: 共有161条查询结果,搜索用时 796 毫秒
61.

Background

Chronic kidney disease (CKD) is a progressive loss of kidney function and structure that affects approximately 13% of the population worldwide. A recent meta-analysis revealed that cell-based therapies improve impaired renal function and structure in preclinical models of CKD. We assessed the safety and tolerability of bone marrow–mesenchymal stromal cell (MSC) infusion in patients with CKD.

Methods

A single-arm study was carried out at one center with 18-month follow-up in seven eligible patients with CKD due to different etiologies such as hypertension, nephrotic syndrome (NS) and unknown etiology. We administered an intravenous infusion (1–2?×?106 cells/kg) of autologous cultured MSCs. The primary endpoint was safety, which was measured by number and severity of adverse events. The secondary endpoint was decrease in the rate of decrease in estimated glomerular filtration rate (eGFR). We compared kidney function during the follow-up visits to baseline and 18 months prior to the intervention.

Results

Follow-up visits of all seven patients were completed; however, we have not observed any cell-related adverse events during the trial. Changes in eGFR (P?=?0.10) and serum creatinine (P?=?0.24) from 18 months before cell infusion to baseline in comparison with baseline to 18 months were not statistically significant.

Conclusions

We showed safety and tolerability of a single-dose infusion of autologous MSCs in patients with CKD.  相似文献   
62.
63.
Calreticulin is an endoplasmic reticulum protein important in cardiovascular development. Deletion of the calreticulin gene leads to defects in the heart and the formation of omphaloceal. These defects could both be due to changes in the extracellular matrix composition. Matrix metalloproteinases (MMP)-2 and MMP-9 are two of the MMPs which are essential for cardiovascular remodelling and development. Here, we tested the hypothesis that the defects observed in the heart and body wall of the calreticulin null embryos are due to alterations in MMP-2 and MMP-9 activity. Our results demonstrate that there is a significant decrease in the MMP-9 and increase in the MMP-2 activity and expression in the calreticulin deficient cells. We also showed that there is a significant increase in the expression level of membrane type-1 matrix metalloproteinase (MT1-MMP). In contrast, there was no change in the tissue inhibitor of matrix metalloproteinase (TIMP)-1 or -2 in the calreticulin deficient cells as compared to the wild type cells. Interestingly, the inhibition of the MEK kinase pathway using PD98059 attenuated the decrease in the MMP-9 mRNA with no effect on the MMP-2 mRNA level in the calreticulin deficient cells. Furthermore, PI3 kinase inhibitor decreased the expression of both the MMP-2 and MMP-9. This study is the first report on the role of calreticulin in regulating MMP activity.  相似文献   
64.
This study reports on the electropolymerization of a low toxic and biocompatible nanopolymer with entitle poly arginine‐graphene quantum dots‐chitosan (PARG‐GQDs‐CS) as a novel strategy for surface modification of glassy carbon surface and preparation of a new interface for measurement of malondialdehyde (MDA) in exhaled breath condensate. Electrochemical deposition, as a well‐controlled synthesis procedure, has been used for subsequently layer‐by‐layer preparation of GQDs‐CS nanostructures on a PARG prepolymerized on the surface of glassy carbon electrode using cyclic voltammetry techniques in the regime of ?1.5 to 2 V. The modified electrode appeared as an effective electroactivity for detection of MDA by using cyclic voltammetry, linear sweep voltammetry, and differential pulse voltammetry. The prepared modified electrode demonstrated a noticeably good activity for electrooxidation of MDA than PARG. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of PARG and semiconducting polymer, GQDs as high density of edge plane sites and subtle electronic characteristics and unique properties of CS such as excellent film‐forming ability, high permeability, good adhesion, nontoxicity, cheapness, and a susceptibility to chemical modification. The prepared sensor showed 1 oxidation processes for MDA at potentials about 1 V with a low limit of quantification 5.94 nM. Finally, application of new sensor for determination of MDA in exhaled breath condensate was suited. In general, the simultaneous attachment of GQDs and CS to structure of poly amino acids provides new opportunities within the personal healthcare.  相似文献   
65.
Aflatoxins are potential food pollutants produced by fungi. One of important toxins is aflatoxin M1 (AFM1). A great deal of concern is associated with AFM1 toxicity. In the present study, an innovative electrochemical interface for quantitation of AFM1 based on ternary signal amplification strategy was fabricated. In this work, silver nanoparticles was electrodeposited onto green and biocompatible nanocomposite containing α‐cyclodextrin as conductive matrix and graphene quantum dots as amplification element. Therefore, a multilayer film based on α‐cyclodextrin, graphene quantum dots, and silver nanoparticles was exploited to develop a highly sensitive electrochemical sensor for detection of AFM1. Fully electrochemical methodology was used to prepare a transducer on a glassy carbon electrode, which provided a high surface area toward sensitive detection of AFM1. The surface morphology of electrode surface was characterized by high‐resolution field emission scanning electron microscope. The proposed sensing platform provides a simple tool for AFM1 detection. Under optimized condition, the calibration curve for AFM1 concentration was linear in 0.015mM to 25mM with low limit of quantification of 2μM. The practical analytical utility of the modified electrode was illustrated by determination of AFM1 in unprocessed milk samples.  相似文献   
66.
Antibodies prepared against a homogeneous preparation of Co-eIF-2A20 [Ahmad et al. (1985) J. Biol. Chem. 260, 6955-6959] reacted with several polypeptides including an 80-kDa polypeptide present in a crude yeast ribosomal salt wash. This 80-kDa polypeptide, containing Co-eIF-2A (Co-eIF-2A80) activity, has been extensively purified using a two-step purification procedure involving an immunoaffinity column chromatograph prepared using antibodies against Co-eIF-2A20 (fraction II) and hydroxyapatite chromatography (fraction III). The factors, eIF-2 + homogeneous Co-eIF-2A80 (fraction III) promoted Met-tRNAf.40S complex formation with an AUG codon but not with a physiological mRNA or a polyribonucleotide messenger poly(U,G) whereas eIF-2 + a partially purified Co-eIF-2A80 preparation (fraction II) promoted Met-tRNAf.40S complex formation with an AUG codon as well as with globin mRNA and poly(U,G) messenger. This factor-promoted Met-tRNAf binding to 40S ribosomes depends absolutely on the presence of a polyribonucleotide messenger containing an initiation codon (such as AUG or GUG). Other polyribonucleotide messengers tested, such as poly(U), poly(A) and poly(A,C) were completely ineffective in this binding reaction. This result indicates that the Met-tRNAf.40S.mRNA complex is formed by a direct interaction between Met-tRNAf, 40S ribosomes and the initiation site in mRNA. A mechanism has been proposed for Met-tRNAf.40S.mRNA complex formation in yeast.  相似文献   
67.
BackgroundDiarrheal disease is the second leading cause of disease in children less than 5 y of age. Poor water, sanitation, and hygiene conditions are the primary routes of exposure and infection. Sanitation and hygiene interventions are estimated to generate a 36% and 48% reduction in diarrheal risk in young children, respectively. Little is known about whether the number of households sharing a sanitation facility affects a child''s risk of diarrhea. The objective of this study was to describe sanitation and hygiene access across the Global Enteric Multicenter Study (GEMS) sites in Africa and South Asia and to assess sanitation and hygiene exposures, including shared sanitation access, as risk factors for moderate-to-severe diarrhea (MSD) in children less than 5 y of age.Methods/FindingsThe GEMS matched case-control study was conducted between December 1, 2007, and March 3, 2011, at seven sites in Basse, The Gambia; Nyanza Province, Kenya; Bamako, Mali; Manhiça, Mozambique; Mirzapur, Bangladesh; Kolkata, India; and Karachi, Pakistan. Data was collected for 8,592 case children aged <5 y old experiencing MSD and for 12,390 asymptomatic age, gender, and neighborhood-matched controls. An MSD case was defined as a child with a diarrheal illness <7 d duration comprising ≥3 loose stools in 24 h and ≥1 of the following: sunken eyes, skin tenting, dysentery, intravenous (IV) rehydration, or hospitalization. Site-specific conditional logistic regression models were used to explore the association between sanitation and hygiene exposures and MSD. Most households at six sites (>93%) had access to a sanitation facility, while 70% of households in rural Kenya had access to a facility. Practicing open defecation was a risk factor for MSD in children <5 y old in Kenya. Sharing sanitation facilities with 1–2 or ≥3 other households was a statistically significant risk factor for MSD in Kenya, Mali, Mozambique, and Pakistan. Among those with a designated handwashing area near the home, soap or ash were more frequently observed at control households and were significantly protective against MSD in Mozambique and India.ConclusionsThis study suggests that sharing a sanitation facility with just one to two other households can increase the risk of MSD in young children, compared to using a private facility. Interventions aimed at increasing access to private household sanitation facilities may reduce the burden of MSD in children. These findings support the current World Health Organization/ United Nations Children''s Emergency Fund (UNICEF) system that categorizes shared sanitation as unimproved.  相似文献   
68.
Under standard conditions, in the presence of GTP, highly purified eIF-2 and Co-eIF-2 factor preparations efficiently stimulated AUG-codon dependent but not physiological mRNA-dependent Met-tRNAf binding to 40S ribosomes. Replacement of GTP by a nonhydrolyzable GTP analog, GMP-PNP, in the above system, gave significant stimulation of Met-tRNAf binding to 40S ribosomes dependent on physiological mRNAs. Lower but significant stimulation of Met-tRNAf binding to 40S ribosomes was also observed when GTP was used in the presence of nucleoside 5'-diphosphate kinase (NDK) and ATP. ATP alone in the absence of NDK had no significant effect. This is the first report on the formation of a stable Met-tRNAf . 40S initiation complex dependent on physiological mRNAs and the factor requirements for such complex formation.  相似文献   
69.
Laccases (benzenediol oxygen oxidoreductase; EC 1.10.3.2) have many biotechnological applications because of their oxidation ability towards a wide range of phenolic compounds. Within recent years, researchers have been highly interested in the identification and characterization of laccases from bacterial sources. In this study, we have isolated and cloned a gene encoding laccase (CotA) from Bacillus sp. HR03 and then expressed it under microaerobic conditions and decreased temperature in order to obtain high amounts of soluble protein. The laccase was purified and its biochemical properties were investigated using three common laccase substrates, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). K M and k cat were calculated 535 μM and 127 s−1 for ABTS, 53 μM and 3 s−1 for 2, 6-DMP and 5 μM and 20 s−1 for SGZ when the whole reactions were carried out at room temperature. Laccase activity was also studied when the enzyme was preincubated at 70 and 80°C. With SGZ as the substrate, the activity was increased three-fold after 50 min preincubation at 70°C and 2.4-fold after 10 min preincubation at 80°C. Preincubation of the enzyme in 70°C for 30 min raised the activity four-fold with ABTS as the substrate. Also, l-dopa was used as a substrate. The enzyme was able to oxidize l-dopa with the K M and k cat of 1,493 μM and 194 s−1, respectively.  相似文献   
70.
Alcanivorax borkumensis is an oil-degrading marine bacterium. Its genome contains genes coding for three cytochrome P450s and two integral membrane alkane hydroxylases (AlkB1 & AlkB2), all assumed to perform hydroxylation of different linear or branched alkanes. Although, the sequence of alkB2 has been determined, the molecular characterization and the substrate specificity of AlkB2 require more precise investigation. In this study, AlkB2 from A. borkumensis SK2 was expressed in Escherichia coli to examine the functionality of AlkB2 as a hydroxylating enzyme. Furthermore, the activity of the enzyme in the presence of the accessory proteins, rubredoxin (RubA) and rubredoxin reductase (RubB), produced in E. coli BL21(DE3)plysS cells, was determined. Recombinant AlkB2 is produced in an active form and rubredoxin is the intermediate electron donor to AlkB2 and can replace AlkG function, when NADH is the prime electron donor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号