首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   20篇
  2023年   2篇
  2022年   9篇
  2021年   11篇
  2020年   7篇
  2019年   11篇
  2018年   13篇
  2017年   10篇
  2016年   15篇
  2015年   6篇
  2014年   20篇
  2013年   20篇
  2012年   13篇
  2011年   19篇
  2010年   9篇
  2009年   14篇
  2008年   11篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   7篇
  1985年   2篇
  1984年   1篇
  1982年   6篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1967年   2篇
  1965年   1篇
排序方式: 共有277条查询结果,搜索用时 19 毫秒
41.
A Nasim  C Grant 《Mutation research》1973,17(2):185-190
Strains showing ethyl methanesulfonate (EMS)-induced replicating instability were genetically analysed to test whether within a given line, mosaics from different plating generations carry a mutation at the same site within the locus. A forward mutation system involving five loci controlling adenine biosynthesis in Schizosaccharomyces pombe was used. Genetic analysis was carried out by interallelic complementation and intragenic recombination tests. The data showed that EMS-induced instabilities are site-specific in being confined to the same recombination unit. This finding is discussed in relation to the possible mechanism(s) of replicating instabilities after different mutagenic treatments in a variety of biological systems.  相似文献   
42.
43.
44.
Improvement of potato has been accomplished using conventional and non-conventional approaches coupled with numerous tissue culture procedures. The aim of the present study was to assess the efficacy of gibberellic acid (GA3) on the morphogenesis of International Potato Center (CIP) potato explants and acclimatization of plantlets in the field. Nodal segments as an explant source (1–1.5 cm) were isolated from 31 CIP potato plantlets and were inoculated into Murashige and Skoog (MS) medium supplemented with 0.0 (control), 0.1, 0.5, or 1.0 mg L?1of GA3. The variation in growth parameters of the cultivars was then observed. The highest shoot induction occurred in MS medium containing 1.0 mg L?1 GA3 with an increase in the inter-nodal distance between nodes as compared to other treatments. Higher concentration (1.0 mg L?1) of GA3 significantly increased plant height and root length in the treated germplasm however; this concentration was inhibitory to the number of nodes and roots per plant. The number of leaves was significantly increased in plants receiving GA3 treatment at lower concentration (0.1 mg L?1). The 31 CIP genotypes were transplanted to the field and checked for yield quality traits. It was concluded from the results that GA3 had significant effects on morphogenesis and was effective in the acclimatization of CIP potato plantlets in field.  相似文献   
45.
Hyperglycemia affects retinal vascular cell function, promotes the development and progression of diabetic retinopathy and ultimately causes vision loss. Oxidative stress, reactive oxygen species (ROS) in excess, is a key biomarker for diabetic retinopathy. Using time‐lapse fluorescence microscopy, ROS dynamics was monitored and the metabolic resistivity of retinal endothelial cells (REC) and pericytes (RPC) was compared under metabolic stress conditions including high glucose (HG). In the presence of a mitochondrial stressor, REC exhibited a significant increase in the rate of ROS production compared with RPC. Thus, under normal glucose (NG), REC may utilize oxidative metabolism as the bioenergetic source, while RPC metabolic activity is independent of mitochondrial respiration. In HG condition, the rate of ROS production in RPC was significantly higher, whereas this rate remained unchanged in REC. Thus, under HG condition RPC may preferentially utilize oxidative metabolism, which results in increased rate of ROS production. In contrast, REC use glycolysis as their major bioenergetic source for ATP production, and consequently HG minimally affects their ROS levels. These observations are consistent with our previous studies where we showed HG condition has minimal effect on apoptosis of REC, but results in increased rate of apoptosis in RPC. Collectively, our results suggest that REC and RPC exhibit different metabolic activity preferences under different glucose conditions. Thus, protection of RPC from oxidative stress may provide an early point of intervention in development and progression of diabetic retinopathy.   相似文献   
46.
As PCR methods have improved over the last 15 years, there has been an upsurge in the number of new DNA marker tools, which has allowed the generation of high-density molecular maps for all the key Brassica crop types. Biotechnology and molecular plant breeding have emerged as a significant tool for molecular understanding that led to a significant crop improvement in the Brassica napus species. Brassica napus possess a very complicated polyploidy-based genomics. The quantitative trait locus (QTL) is not sufficient to develop effective markers for trait introgression. In the coming years, the molecular marker techniques will be more effective to determine the whole genome impairing desired traits. Available genetic markers using the single-nucleotide sequence (SNP) technique and high-throughput sequencing are effective in determining the maps and genome polymorphisms amongst candidate genes and allele interactions. High-throughput sequencing and gene mapping techniques are involved in discovering new alleles and gene pairs, serving as a bridge between the gene map and genome evaluation. The decreasing cost for DNA sequencing will help in discovering full genome sequences with less resources and time. This review describes (1) the current use of integrated approaches, such as molecular marker technologies, to determine genome arrangements and interspecific outcomes combined with cost-effective genomes to increase the efficiency in prognostic breeding efforts. (2) It also focused on functional genomics, proteomics and field-based breeding practices to achieve insight into the genetics underlying both simple and complex traits in canola.  相似文献   
47.
Drought is one of the key restraints to agricultural productivity worldwide and is expected to increase further. Drought stress accompanied by reduction in precipitation pose major challenges to future food safety. Strategies should be develop to enhance drought tolerance in crops like chickpea and wheat, in order to enhance their growth and yield. Drought tolerance strategies are costly and time consuming however, recent studies specify that plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) can help plants to withstand under harsh environmental condition and enable plants to cope with drought stress. PGPR can act as biofertilizer and bioenhancer for different legumes and non-legumes. The use of PGPR and symbiotic microorganisms, may be valuable in developing strategies to assist water conservation in plants. The use of PGPR has been confirmed to be an ecologically sound way of enhancing crop yields by facilitating plant growth through direct or indirect mechanism. The mechanisms of PGPR for water conservation include secretion of exopolysaccharides, biofilm formation, alternation in phytohormone content, improvement in sugar concentration, enhancing availability of micro- and macronutrients and changes in plant functional traits. Similarly, plant growth regulators (PGRs) are specially noticed in actively growing tissues under stress conditions and have been associated in the control of cell division, embryogenesis, root formation, fruit development and ripening, and reactions to biotic and abiotic stresses and upholding water conservation status in plants. Previous studies also suggest that plant metabolites interact with plant physiology under stress condition and impart drought tolerance. Metabolites like, sugars, amino acids, organic acid and polyols play a key role in drought tolerance of crop plants grown under stress condition. It is concluded from the present study that PGRs in combination with PGPR consortium can be an effective formulation to promote plant growth and maintenance of plant turgidity under drought stress. This review is a compilation of the effect of drought stress on crop plants and described interactions between PGPR/PGRs and plant development, knowledge of water conservation and stress release strategies of PGPR and PGRs and the role of plant metabolites in drought tolerance of crop plants. This review also bridges the gaps that summarizes the mechanism of action of PGPR for drought tolerance of crop plants and sustainability of agriculture and applicability of these beneficial rhizobacteria in different agro-ecosystems under drought stress.  相似文献   
48.
Canola (Brassica napus L.), an agro-economically important crop in the world, is sensitive to many fungal pathogens. One strategy to combat fungal diseases is genetic engineering through transferring genes encoding the pathogenesis-related (PR) proteins such as chitinase which cause the chitin degradation of fungal cell wall. Chitinase Chit42 from Trichoderma atroviride (PTCC5220) plays an important role in biocontrol and has high antifungal activity against a wide range of phytopathogenic fungi. This enzyme lacks a chitin binding domain (ChBD) which is involved in binding activity to insoluble chitin. In the present study, we investigated the effect of chitin binding domain fused to Chit42 when compared with native Chit42. These genes were over-expressed under the CaMV35S promoter in B. napus, R line Hyola 308. Transformation of cotyledonary petioles was achieved by pBISM2 and pBIKE1 constructs containing chimeric and native Chit42 genes respectively, via Agrobacterium method. The insertion of transgenes in T0 generation was verified through polymerase chain reaction (PCR) and Southern blot analysis. Antifungal activity of expressed chitinase in transgenic plants was also investigated by bioassays. The transgenic canola expressing chimeric chitinase showed stronger inhibition against phytopathogenic fungi that indicates the role of chitin binding domain.  相似文献   
49.
A study was conducted to estimate the effect of UV-C (200–280 nm) radiation stress on growth and physiochemical responses of Camelina sativa L. cv. Calina (EC643910; a potential bio-fuel crop) for its possible mass multiplication at high-altitude under high radiations. The germination percentage in terms of radicle protrusion and opening of cotyledonary leaves significantly decreased 13.98 and 27.8 %, respectively, as compared to control. However, no significant change was observed in growth parameters including root and shoot lengths and fresh biomass. The relative membrane leakage rate and lipid peroxidation as a malondialdehyde contents significantly increased with the value of ~99 % and 0.17 mM g?1 FW, respectively, under UV-C stress. Also, the proline, glycine betaine and total soluble sugars contents increased by ~330, ~440, ~144 %, respectively, as compared to control. Among non-enzymatic antioxidants, the ascorbic acid and total phenol contents significantly increased by ~284 and ~537 %, respectively, as compared to control. Likewise, the activity of antioxidant enzyme, ascorbate peroxidase, guaiacol peroxidase and catalase increased under UV-C stress with the value of 1.03, 0.05 and 0.06 µmol mg protein?1 min?1, respectively. In addition, the chlorophyll a, b and total (a + b) contents decreased by ~180, ~151 and ~147 %, respectively, as compared to control. In contrast, the total carotenoids and anthocyanin contents increased by ~160 and ~184 %, respectively. Our findings suggest the adaptive growth and physiochemical responses of C. sativa under UV-C stress. Therefore, it may be recommended for large-scale cultivation at high-altitude under intense natural radiations for future bio-fuel production.  相似文献   
50.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号