首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25259篇
  免费   15524篇
  国内免费   2篇
  40785篇
  2023年   14篇
  2022年   96篇
  2021年   403篇
  2020年   2191篇
  2019年   3723篇
  2018年   3828篇
  2017年   4101篇
  2016年   4092篇
  2015年   3988篇
  2014年   3633篇
  2013年   4057篇
  2012年   1707篇
  2011年   1430篇
  2010年   3003篇
  2009年   1762篇
  2008年   636篇
  2007年   226篇
  2006年   219篇
  2005年   269篇
  2004年   252篇
  2003年   240篇
  2002年   237篇
  2001年   245篇
  2000年   183篇
  1999年   128篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   8篇
  1985年   2篇
  1982年   7篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   5篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
  1967年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
Summary Following mutagenesis of yeast cells with nitrosoguanidine, primary mosaic colonies exhibiting prototrophic/auxotrophic phenotypes were obtained. Upon replating of these primary mosaics, numerous secondary mosaics were present in the progeny. This study shows that replicating instabilities occur at many different loci within the Schizosaccharomyces pombe genome. In addition, the ade-1 gene of Saccharomyces cerevisiae (causing red pigmentation) was used to show that the phenomenon also occurs in this yeast.NRCC#240/8  相似文献   
113.
114.
115.
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity.  相似文献   
116.
Endemic species are important components of regional biodiversity and hold the key to understanding local adaptation and evolutionary processes that shape species distributions. This study investigated the biogeographic history of a relict conifer Pinus bungeana Zucc. ex Endl. confined to central China. We examined genetic diversity in P. bungeana using genotyping-by-sequencing and chloroplast and mitochondrial DNA markers. We performed spatial and temporal inference of recent genetic and demographic changes, and dissected the impacts of geography and environmental gradients on population differentiation. We then projected P. bungeana's risk of decline under future climates. We found extremely low nucleotide diversity (average π 0.0014), and strong population structure (global FST 0.234) even at regional scales, reflecting long-term isolation in small populations. The species experienced severe bottlenecks in the early Pliocene and continued to decline in the Pleistocene in the western distribution, whereas the east expanded recently. Local adaptation played a small (8%) but significant role in population diversity. Low genetic diversity in fragmented populations makes the species highly vulnerable to climate change, particularly in marginal and relict populations. We suggest that conservation efforts should focus on enhancing gene pool and population growth through assisted migration within each genetic cluster to reduce the risk of further genetic drift and extinction.  相似文献   
117.
Oresitrophe and Mukdenia (Saxifragaceae) are epilithic sister genera used in traditional Chinese medicine. The taxonomy of Mukdenia, especially of M. acanthifolia, has been controversial. To address this, we produced plastid and mitochondrial data using genome skimming for Mukdenia acanthifolia and Mukdenia rossii, including three individuals of each species. We assembled complete plastomes, mitochondrial CDS and nuclear ribosomal ETS/ITS sequences using these data. Comparative analysis shows that the plastomes of Mukdenia and Oresitrophe are relatively conservative in terms of genome size, structure, gene content, RNA editing sites and codon usage. Five plastid regions that represent hotspots of change (trnH-psbA, psbC-trnS, trnM-atpE, petA-psbJ and ccsA-ndhD) are identified within Mukdenia, and six regions (trnH-psbA, petN-psbM, trnM-atpE, rps16-trnQ, ycf1 and ndhF) contain a higher number of species-specific parsimony-informative sites that may serve as potential DNA barcodes for species identification. To infer phylogenetic relationships between Mukdenia and Oresitrophe, we combined our data with published data based on three different datasets. The monophyly of each species (Oresitrophe rupifraga, M. acanthifolia and M. rossii) and the inferred topology ((M. rossii, M. acanthifolia), O. rupifraga) are well supported in trees reconstructed using the complete plastome sequences, but M. acanthifolia and M. rossii did not form a separate clade in the trees based on ETS + ITS data, while the mitochondrial CDS trees are not well-resolved. We found low recovery of genes in the Angiosperms353 target enrichment panel from our unenriched genome skimming data. Hybridization or incomplete lineage sorting may be the cause of discordance between trees reconstructed from organellar and nuclear data. Considering its morphological distinctiveness and our molecular phylogenetic results, we strongly recommend that M. acanthifolia be treated as a distinct species.  相似文献   
118.
Aah I is a 63-residue alpha-toxin isolated from the venom of the Buthidae scorpion Androctonus australis hector, which is considered to be the most dangerous species. We report here the first chemical synthesis of Aah I by the solid-phase method, using a Fmoc strategy. The synthetic toxin I (sAah I) was renatured in DMSO-Tris buffer, purified and subjected to thorough analysis and comparison with the natural toxin. The sAah I showed physico-chemical (CD spectrum, molecular mass, HPLC elution), biochemical (amino-acid composition, sequence), immunochemical and pharmacological properties similar to those of the natural toxin. The synthetic toxin was recognized by a conformation-dependent monoclonal anti-Aah I antibody, with an IC50 value close to that for the natural toxin. Following intracerebroventricular injection, the synthetic and the natural toxins were similarly lethal to mice. In voltage-clamp experiments, Na(v) 1.2 sodium channel inactivation was inhibited by the application of sAah I or of the natural toxin in a similar way. This work describes a simple protocol for the chemical synthesis of a scorpion alpha-toxin, making it possible to produce structural analogues in time.  相似文献   
119.
120.
Summary A small percentage of the primary petites isolated from strain 1403-7A-P1, constitutive for maltase synthesis, simultaneously lost the ability to utilize maltose and alpha-methylglucoside. Further studies showed that these primary petites were not stable with respect to maltose utilization. Approximately 30% of the secondary petites when isolated from the primary petites after vegetative growth were found to papillate on maltose plates. Tetrad analysis data revealed that a nuclear gene has reverted in these papillae, which is responsible for suppression of the maltose negative phenotype in primary petites. We have designated this nuclear gene as the PMU1 gene (petite maltose utilizer). The functional form of the PMU1 gene is required in addition to the MAL4 gene for both constitutive maltase synthesis and maltose utilization in cytoplasmic petite cells derived from strain 1403-7A-P1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号