首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   20篇
  2023年   2篇
  2022年   9篇
  2021年   14篇
  2020年   10篇
  2019年   12篇
  2018年   14篇
  2017年   10篇
  2016年   15篇
  2015年   7篇
  2014年   22篇
  2013年   21篇
  2012年   13篇
  2011年   19篇
  2010年   9篇
  2009年   16篇
  2008年   11篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   7篇
  1985年   2篇
  1984年   1篇
  1982年   6篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1967年   2篇
  1965年   1篇
排序方式: 共有293条查询结果,搜索用时 125 毫秒
61.
Inhibition of tumour necrosis factor (TNF)-alpha with biological molecules has proven an effective treatment for rheumatoid arthritis, achieving a 20% improvement in American College of Rheumatology score in up to 65% of patients. The main drawback to these and many other biological treatments has been their expense, which has precluded their widespread application. Biological molecules could alternatively be delivered by gene therapy as the encoding DNA. We have developed novel plasmid vectors termed pGTLMIK and pGTTMIK, from which luciferase and a dimeric TNF receptor II (dTNFR) are respectively expressed in a doxycycline (Dox)-regulated manner. Regulated expression of luciferase from the self-contained plasmid pGTLMIK was examined in vitro in a variety of cell lines and in vivo following intramuscular delivery with electroporation in DBA/1 mice. Dox-regulated expression of luciferase from pGTLMIK of approximately 1,000-fold was demonstrated in vitro, and efficient regulation was observed in vivo. The vector pGTTMIK encoding dTNFR was delivered by the same route with and without administration of Dox to mice with collagen-induced arthritis. When pGTTMIK was delivered after the onset of arthritis, progression of the disease in terms of both paw thickness and clinical score was inhibited when Dox was also administered. Vectors with similar regulation characteristics may be suitable for clinical application.  相似文献   
62.
The aim of the current investigation was to determine the antibacterial and antibiofilm potential of MgO nanoparticles (NPs) against antibiotic‐resistant clinical strains of bacteria. MgO NPs were synthesized by a wet chemical method and further characterized by scanning electron microscopy and energy dispersive X‐ray. Antibacterial activity was determined by broth microdilution and agar diffusion methods. The Bradford method was used to assess cellular protein leakage as a result of loss of membrane integrity. Microtiter plate assay following crystal violet staining was employed to determine the effect of MgO NPs on biofilm formation and removal of established biofilms. MIC values ranged between 125 and 500 μg/mL. Moreover, treatment with MgO NPs accelerated rate of membrane disruption, measured as a function of leakage of cellular proteins. Leakage of cellular protein content was greater among gram‐negative bacteria. Cell adherence assay indicated 25.3–49.8% inhibition of bacterial attachment to plastic surfaces. According to a static biofilm method, MgO NPs reduced biofilm formation potential from 31% to 82.9% in a time‐dependent manner. Moreover, NPs also significantly reduced the biomass of 48, 72, 96 and 120 hr old biofilms (P < 0.05). Cytotoxicity experiments using a neutral red assay revealed that MgO NPs are non‐toxic to HeLa cells at concentrations of 15–120 μg/mL. These data provide in vitro scientific evidence that MgO NPs are effective and safe antibiofilm agents that inhibit adhesion, biofilm formation and removal of established biofilms of multidrug‐resistant bacteria.
  相似文献   
63.
The present research focused on enhancing the production of wedelolactone through cell suspension culture (CSC) in Eclipta alba (L.) Hassk. With an aim of attaining a sustainable CSC, various plant growth regulators, elicitors and agitation speed were examined. Nodal segments of in vitro propagated plantlets induced the maximum percentage (93.47?±?0.61%) of callus inoculated on Murashige and Skoog (MS) medium fortified with picloram (2 mg L?1). The growth kinetics of CSC exhibited a sigmoid pattern with a lag phase (0–6 days), a log phase (6–18 days), a stationary phase (18–24 days) and then death phase thereafter. The highest biomass accumulation in CSC with 7.09?±?0.06 g 50 mL?1 fresh weight, 1.52?±?0.02 g 50 mL?1 dry cell weight, 1.34?±?0.01?×?106 cell mL?1 total cell count and 57.00?±?0.58% packed cell volume was obtained in the liquid MS medium supplemented with 1.5 mg L?1 picloram plus 0.5 mg L?1 kinetin at 120 rpm. High performance thin layer chromatography confirmed that yeast extract (biotic elicitor) at 150 mg L?1 accumulated more CSC biomass with 1.22-fold increase in wedelolactone (288.97?±?1.94 µg g?1 dry weight) content in comparison to the non-elicited CSC (237.78?±?0.04 µg g?1 dry weight) after 120 h of incubation. Contrastingly, methyl jasmonate (abiotic elicitor) did not alter the biomass but increased the wedelolactone content (259.32?±?1.06 µg g?1 dry weight) to an extent of 1.09-fold at 100 µM. Complete plantlet regeneration from CSC was possible on MS medium containing N6-benzyladenine (0.75 mg L?1) and abscisic acid (0.5 mg L?1). Thus, the establishment of protocol for CSC constitutes the bases for future biotechnological improvement studies in this crop.  相似文献   
64.
Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affect Nod factor structure. Here we show that insertion and frameshift mutations in the nodZ gene abolish fucosylation of Nod factors. In vitro assays using GDP-L-fucose as the fucose donor show that fucosyltransferase activity is associated with the nodZ gene product (NodZ). NodZ is located in the soluble protein fraction of NGR234 cells. Together with extra copies of the nodD1 gene, the nodZ gene and its associated nod box were introduced into ANU265, which is NGR234 cured of the symbiotic plasmid. Crude extracts of this transconjugant possess fucosyltransferase activity. Fusion of a His6 tag to the NodZ protein expressed in Escherichia coli yielded a protein able to fucosylate both nonfucosylated NodNGR factors and oligomers of chitin. NodZ is inactive on monomeric N-acetyl-D-glucosamine and on desulfated Rhizobium meliloti Nod factors. Kinetic analyses showed that the NodZ protein is more active on oligomers of chitin than on nonfucosylated NodNGR factors. Pentameric chitin is the preferred substrate. These data suggest that fucosylation occurs before acylation of the Nod factors.  相似文献   
65.
This work addresses the kinetic analysis of the interaction of methotrexate (MTX) with human erythrocyte membrane-bound acetylcholinesterase (AChE, EC 3.1. 1.7). It was found that the MTX effect was independent of time of incubation with AChE before the addition of substrate which proves its reversible action. The IC50 was determined, by three methods, to be 0.73 mM. The Michaelis-Menten constant (Ks) for the hydrolysis of acetylthiocholine iodide (ASCh) by AChE was 0.13 mM in the control system, a value decreased by 30–61% in the MTX treated systems. The Vmax was 1.27tmole/min/mg protein for the control system while it was decreased by 44–77% in the MTX treated systems. The Linexveaver-Buck plot, Dixon plot, and their secondary replots indicated that the nature of the inhibition was of the linear mixed type, i.e. uncompetitive and noncompetitive. The values of Ki(slope) and KI(tntecept) were estimated as 1.67 and 0.34 mM, respectively.Abbreviations AChE acetylcholinesterase - ASCh acetylthiocholine - Ks Michaelis-Menten constant - Vmax the limiting maximal velocity - Ki inhibition constant - MTX methotrexate  相似文献   
66.
Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13×10−14 for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32–1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94–1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47–9.61, Pdiff<0.05). While we did not find lip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions.  相似文献   
67.

Objectives

Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is one of the major fungal diseases of canola. To develop resistance against this fungal disease, the chit42 from Trichoderma atroviride with chitin-binding domain and polygalacturonase-inhibiting protein 2 (PG1P2) of Phaseolus vulgaris were co-expressed in canola via Agrobacterium-mediated transformation.

Results

Stable integration and expression of transgenes in T0 and T2 plants was confirmed by PCR, Southern blot and RT-PCR analyses. Chitinase activity and PGIP2 inhibition were detected by colorimetric and agarose diffusion assay in transgenic lines but not in untransformed plants. The crude proteins from single copy transformant leaves having high chitinase and PGIP2 activity (T16, T8 and T3), showed up to 44 % inhibition of S. sclerotiorum hyphal growth. The homozygous T2 plants, showing inheritance in Mendelian fashion (3:1), were further evaluated under greenhouse conditions for resistance to S. sclerotiorum. Intact plants contaminated with mycelia showed resistance through delayed onset of the disease and restricted size and expansion of lesions as compared to wild type plants.

Conclusions

Combined expression of chimeric chit42 and pgip2 in Brassica napus L. provide subsequent protection against SSR disease and can be helpful in increasing the canola production in Iran.
  相似文献   
68.
69.
Summary Nine radiation-sensitive mutants of S. pombe showing a variety of phenotypic characteristics were analysed for their ability to excise pyrimidine dimers after ultraviolet irradiation. From earlier studies using indirect parameters, it was expected that some would be excision-deficient. Data reported here show that all the mutants tested, like wild type cells, were able to remove a high percentage of pyrimidine dimers during post-irradiation incubation in several different holding media, but not in saline or phosphate buffer. These mutants included strains showing increased, as well as others which showed decreased, levels of UV-induced mutation frequency relative to that of the wild type at the same total dose.  相似文献   
70.
The function of the ras+ gene of Schizosaccharomyces pombe has been studied by constructing null and activated alleles of this gene. An activated allele (rasVal 12) inhibits conjugation but has no effect on cell growth, entry into stationary phase or sporulation. The phenotype of rasVal 12 is distinct from that caused by elevating the intracellular level of cAMP. This supports the hypothesis that ras of fission yeast does not modulate adenylate cyclase in a manner analogous to S. cerevisiae RAS. Introduction of a human ras sequence into fission yeast cells containing a non-functional null allele of ras restored the sexual differentiation process thus indicating that the human sequence can complement S. pombe ras. Our data suggest that although ras genes are highly conserved across a considerable evolutionary divide, the cellular function of the ras gene product varies in different organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号