首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   3篇
  2011年   9篇
  2010年   3篇
  2009年   7篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
11.
Homology models of amidase-03 from Bacillus anthracis were constructed using Modeller (9v2). Modeller constructs protein models using an automated approach for comparative protein structure modeling by the satisfaction of spatial restraints. A template structure of Listeria monocytogenes bacteriophage PSA endolysin PlyPSA (PDB ID: 1XOV) was selected from protein databank (PDB) using BLASTp with BLOSUM62 sequence alignment scoring matrix. We generated five models using the Modeller default routine in which initial coordinates are randomized and evaluated by pseudo-energy parameters. The protein models were validated using PROCHECK and energy minimized using the steepest descent method in GROMACS 3.2 (flexible SPC water model in cubic box of size 1 Å instead of rigid SPC model). We used G43a1 force field in GROMACS for energy calculations and the generated structure was subsequently analyzed using the VMD software for stereo-chemistry, atomic clash and misfolding. A detailed analysis of the amidase-03 model structure from Bacillus anthracis will provide insight to the molecular design of suitable inhibitors as drug candidates.  相似文献   
12.
13.
Somatic mtDNA mutations and deletions in particular are known to clonally expand within cells, eventually reaching detrimental intracellular concentrations. The possibility that clonal expansion is a slow process taking a lifetime had prompted an idea that founder mutations of mutant clones that cause mitochondrial dysfunction in the aged tissue might have originated early in life. If, conversely, expansion was fast, founder mutations should predominantly originate later in life. This distinction is important: indeed, from which mutations should we protect ourselves – those of early development/childhood or those happening at old age? Recently, high-resolution data describing the distribution of mtDNA deletions have been obtained using a novel, highly efficient method (Taylor et al., 2014). These data have been interpreted as supporting predominantly early origin of founder mutations. Re-analysis of the data implies that the data actually better fit mostly late origin of founders, although more research is clearly needed to resolve the controversy.mtDNA mutations, and in particular deletions, progressively increase with age and are suspected culprits of several age-related degenerative processes. Because there are hundreds or even thousands of mtDNA genomes per cell, increase in mutational load may include not only the increase in the number of cells containing mutant genomes, but also increase in the fraction of mutant mtDNA in each cell. Studies of mutational composition of individual cells showed that accumulation of mutations within a cell usually does not occur via accrual of random hits. Instead, mtDNA mutations ‘clonally expand’, that is, a single initial mutation multiplies within cell, replaces normal mtDNAs, eventually takes over the cell, and may impair its mitochondrial function. Expansion is possible because mtDNA molecules in a cell are persistently replicated, even in nondividing cells, where some of them are destroyed and replaced by replication of others. Half-life of murine mtDNA is on the order of several weeks (Korr et al., 1998). The result of clonal expansion is that different cells typically contain different types of mutations, while mutant genomes within a cell carry the same mutation. Mechanisms of expansion are still debated; possibilities range from neutral genetic drift to selection within the ‘population’ of intracellular mitochondria. In this commentary, we do not assume any particular mechanism and concentrate on the kinetics of expansion.Because expansion takes time, it is possible that founder mutations of expanded mutant clones that compromise mitochondria at old age might have occurred early in life. Indeed, if expansion was a slow process taking about a lifetime to conclude (Fig. (Fig.1A,1A, upper panel), then only those mutations that were generated early in life would have enough time to reach harmful intracellular concentration. In an utmost version of this scenario, there is little de novo mutagenesis and increase in mutations with age is mostly driven by clonal expansion of early founder mutations. The ‘slow’ scenario implies that, as far as mtDNA mutagenesis is concerned, we need to preserve mtDNA during early years or even during development and to be less worried about mutations that arise in older individuals.Open in a separate windowFigure 1The ‘slow’ and the ‘fast’ expansion scenarios and the predicted changes in the diversity and extent of expansion of mtDNA mutations with age. Diversity and extent of expansion can be directly measured and used to distinguish between the two scenarios. mtDNA molecules with different deletions are depicted by small circles of different bright colors. Wild-type mtDNA molecules and cells that never get mutations are not shown for simplicity. Of course in a real tissue, mutant cells are surrounded by a great majority of nonmutant cells.If, on the other hand, clonal expansion was rapid (Fig. (Fig.1B1B upper panel), then expanding mutations would swiftly fill up the cells in which founders had arisen and therefore stop expanding. Consequently, overall mutation load would soon ‘plateau off’ if mutants were not continuously occurring. So, in this scenario, the observed persistent increase in mutations with age must be driven by de novo mutagenesis, and most impairment in this scenario is caused by ‘late in life’ mutations, which therefore should be of primary concern. Despite importance of this question, there is still no consensus on which scenario is correct (Payne et al., 2011), (Khrapko, 2011), although the ‘early mutations’ hypothesis appeared more than a decade ago (Elson et al., 2001), (Khrapko et al., 2003).Figure Figure11 schematically depicts two characteristics of the mutational dynamics that distinguish between the two scenarios. First, the diversity, that is, number of different types of deletions (Supplemental Note 0), remains constant in the slow scenario (Fig. (Fig.1A),1A), but steadily increases in the fast scenario (Fig. (Fig.1B).1B). Second, the extent of expansion, that is, the average number of mutant mtDNA molecules per clonal expansion, should increase steadily throughout the lifespan in the slow, early mutations scenario. In contrast, in the fast scenario, extent of expansion should increase rapidly early in life, up to the point when the earliest mutations had enough time to expand to the limits of their host cells and increase much slower thereafter.Recent paper by Taylor et al. (Taylor et al., 2014) describes a new method called Digital Deletion Detection, based on enrichment of deletions by wild-type specific restriction digestion, massive single-molecule PCR in microdroplets, followed by next generation sequencing of the PCR products. This ‘3D’ approach for the first time provided a detailed frequency distribution for a large set of different deleted mtDNA molecules in human brain as a function of age. These data are sufficient to estimate diversity and level of expansion of mutations and therefore promise to help to distinguish between the fast and the slow scenarios. The authors found that a) the number of different types of deletions per sample (used as proxy of diversity) does not increase with age, while b) the ratio of total deletion frequency over the number of deletion types (used as proxy of expansion) does steadily increase with age. Consequently, the authors concluded that ‘diversity of unique deletions remains constant’ and that the ‘data supported the hypothesis that expansion of pre-existing mutations is the primary factor contributing to age-related accumulation of mtDNA deletions’, that is, the slow expansion scenario. We believe, however, that these data deserve more detailed analysis and more cautious interpretation.A striking feature of the data (Taylor et al., 2014) is that the types of deletions found in any two samples are almost completely different (Supplemental Note 1). The same pattern has been previously observed in muscle (Nicholas et al., 2009). To explain this, consider that deletions originate mostly from individual cells each containing clonal expansion of deletion of a certain type. Because there are very many potential types of deletions and much fewer clonal expansions per sample, only a small proportion of possible types of deletions are found in each sample, which explains why two samples typically have almost no deletions in common. Similarly, any two cells with clonal expansions from the same sample usually carry different types of deletion. With this in mind, we will reconsider interpretation of the data.First, consider diversity of deletions. Unfortunately, number of deletion types per sample normalized against the total number of deletions used by Taylor et al. as proxy of diversity is not an adequate measure. First, normalization against the total number of sampled deletion molecules is not justified because in a sample with clonal expansions, the number of types of deletions is not proportional to the number of sequenced molecules (Supplemental Note 2). Instead, the number of deletion types per sample is proportional to the size of the sample (i.e., the size of the tissue piece actually used for DNA isolation). Indeed, increasing sample size means including proportionally more cells with expansions. As discussed above, these additional cells contain different deletion types, so the number of deletion types will also increase roughly proportionally to the sample size. Sample size must be factored out of a rational measure of deletion diversity. The best proxy of sample size available in the original study (Taylor et al., 2014) is the number of mtDNA copies isolated from each sample. Thus, to factor out the sample size, we used the number of deletion types per 1010 mtDNA, (Fig. (Fig.2A).2A). This corrected measure shows rather strong (P < 0.0003) increase in diversity of mtDNA deletions with age (Supplemental Note 3), which fits the ‘fast’ expansion scenario (Fig. (Fig.1B1B).Open in a separate windowFigure 2The observed changes in diversity and extent of expansion of mtDNA mutations in brain with age in Taylor et al. data. (A) Diversity of mtDNA deletions (number of deletion types per 1010 mtDNA) shows strong increase with age (P < 0.0003), corroborating the ‘fast’ expansion scenario (Fig. (Fig.1B).1B). (B) The extent of expansion shows excessive variance and does not seem to support any of the two scenarios (neither ‘fast’ nor ‘slow’) to any significant extent. Interpretation of these data requires more detailed analysis.Next, we revisited the extent of expansion of clonal mutations. As a measure of expansion, we used the average of the actual numbers of deleted molecules per deletion type, same as in Fig 1A,B. Note that this measure is different from ‘expansion index’ (Taylor et al., 2014), defined as deletion frequency per deletion type. This is essentially the same measure we use, additionally divided by the number of all mtDNA molecules in the sample. Unfortunately, ‘expansion index’ so defined systematically increases with decreased sample size. This is because deletion frequency is not expected to systematically increase with sample size, while the number of deletion types is, as shown in the previous paragraph. Thus, in particular because old samples in this set tend to be smaller (Supplemental Fig. 4A), this measure is biased.Extent of expansion of mtDNA mutations is plotted versus age in Fig. Fig.2B.2B. Which theoretical expansion pattern, the ‘slow’ (Fig. (Fig.1A)1A) or the ‘fast’ (Fig. (Fig.1B),1B), better fits the actual data (Fig. (Fig.2B)?2B)? It looks like either fit is poor: the data are notoriously variable. We conclude that it is necessary to look beyond the coarse average measure of the expansion to interpret the data and explain the excessive variance (Supplemental Note 4).The characteristic biphasic shape of the predicted ‘fast’ plot (Fig. (Fig.1B)1B) results from the early large expanded mutations, which are absent in the ‘slow’ scenario (Fig. (Fig.1A).1A). We therefore used the data (Taylor et al., 2014) to estimate the size of expansions (Supplemental Note 5, Supplementary Table S1) and in particular, to look for large expansions in young tissue. Indeed, young samples do contain large clonal expansions, and there are four expansions more than 1000 copies in samples 30 years and younger (Table S1). This is consistent with our own observations of large expansions of deletions in single neurons of the young brain using a different approach – single-molecule amplification (Kraytsberg et al., 2006). In other words, although rapid expansion pattern in Fig. Fig.2B2B is obscured by large variance of the data, the hallmarks of fast expansion, that is, large early mutant expansions, are present in the tissue.An aspect of the data, however, is at odds either with the fast or the slow scenario. The distribution of expansion sizes at any age is rather gradual; that is, there is a large proportion of expansions of intermediate sizes, ranging from smallest detectable (typically about 10 molecules) up to those more than 1000 molecules. In contrast, according to the ‘slow’ expansion scenario, all expansions should be of approximately the same size, which should increase with age, turning ‘large’ at approximately the same time. The fast scenario, also in contradiction with observations, predicts that proportion of mutants contained in expansions of intermediate sizes markedly decreases with age (Supplemental Note 6).If neither of the scenarios fits the data, what kind of mutational dynamics could be responsible for the observed distribution (Taylor et al., 2014)? We believe that most plausible is a ‘mixed’ scenario, where expansions are fast in some cells and slow in other (‘fast’ and ‘slow expanders’, correspondingly), probably with the whole spectrum of expansion rates in between. Expansion rates may differ between cell types or between cells of the same type differing in individual activity, stress, levels of ROS, length of deletion (Fukui & Moraes, 2009), etc. An example of such a difference is given by myoblasts, which, unlike their descendant myofibers, support only very slow, if any, expansion of mtDNA deletions (Moraes et al., 1989).What does this mean with respect to the question in the title of this commentary – when do mtDNA deletions arise? In fact, if we accept the mixed scenario, then it follows that the share of late mutations is at least significant. Indeed, if late mutations played little role, then accumulation of mutations should have been markedly decelerating with age. This is because ‘fast expander’ cells are saturated with mutations early in life and increase in mutation load at older age is driven by progressively ‘slower expanders’, meaning slower increase in mutational load. In contrast with this prediction, accumulation of deletions observed in most tissues appears to aggressively accelerate with age and is traditionally approximated with an exponent. This is also true for the Taylor et al. (2014), which are better fit by accelerating curves than they are by linear function (Fig. S6). The fraction of deleted mtDNA increases over the lifespan by up to four orders of magnitude in highly affected brain areas such as substantia nigra and about three in less affected, such as cortex (Meissner et al., 2008). In principle, even such a dramatic increase in mutant fraction might be entirely driven by expansion of early founder mutations in slow scenario. Neurons contain thousands of mtDNA copies, so expansion alone could potentially sustain about four orders of magnitude increase in mutant fraction from single founder mutants mtDNA to fully mutant cells. However, accelerated accumulation of (expanded) mutations in mixed scenario can only be explained by generation of de novo mutations at older ages.The reality is probably more complicated than idealized scenarios considered above. For example, cells with expanded mutations may die preferentially. If true, this would make fast scenario/late origin even more plausible. Indeed, that would mean that the actual number of mutations that have reached full expansion at any age is higher than observed (extra mutations being those that had died), implying that mutations expand faster than it appears. Other refinements of the model are certainly possible. However, notable variability of the data makes testing hypotheses, in particular, complex ones, difficult. Excessive variability of data on mtDNA deletions has been observed before, for example Meissner et al., 2008, but have never been duly explored. Lack of replicate analyses hampers understanding of the source of variance and of the shape of the frequency distributions of mutations. The latter are indispensable for interpreting the data. Future studies seeking to explain dynamics of mutations with age must include multiple replicate measurements (Supplemental Note 7).In conclusion, re-analysis of the data (Taylor et al., 2014) challenges the authors’ inference that diversity of unique deletions remains constant with age and that expansion of pre-existing deletions is the primary factor contributing to age-related accumulation of mtDNA deletions. The data are more consistent with increasing diversity of deletions and significant impact of mutagenesis at older age. However, the issue is far from being solved, in part because of high variability of the data, and it awaits more detailed studies (Supplemental Note 7).  相似文献   
14.
Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance) into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ♂, 8 ♀) to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES) or following (RES>END) resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1α, PRC, PPARγ), hypertrophy (PGC-1α4, REDD2, Rheb) and atrophy (MuRF-1, Runx1), increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO2peak. However, the order in which exercise was completed (END>RES or RES>END) only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed.  相似文献   
15.
This paper describes the extracellular synthesis of silver nanoparticles from waste part of lychee fruit (peel) and their conjugation with selected antibiotics (amoxicillin, cefixim, and streptomycin). FTIR studies revealed the reduction of metallic silver and stabilization of silver nanoparticles and their conjugates due to the presence of CO (carboxyl), OH (hydroxyl) and CH (alkanes) groups. The size of conjugated nanoparticles varied ranging from 3 to 10 nm as shown by XRD. TEM image revealed the spherical shape of biosynthesized silver nanoparticles. Conjugates of amoxicillin and cefixim showed highest antibacterial activity (147.43 and 107.95%, respectively) against Gram-negative bacteria i.e. Alcaligenes faecalis in comparison with their control counterparts. The highest reduction in MIC was noted against Gram-positive strains i.e. Enterococcus faecium (75%) and Microbacterium oxydans (75%) for amoxicillin conjugates. Anova two factor followed by two-tailed t test showed non-significant results both in case of cell leakage and protein estimation between nanoparticles and conjugates of amoxicillin, cefixime and streptomycin. In case of MDA release, non-significant difference among the test samples against the selected strains. Our study found green-synthesized silver nanoparticles as effective antibacterial bullet against both Gram positive and Gram negative bacteria, but they showed a more promising effect on conjugation with selected antibiotics against Gram negative type.  相似文献   
16.
17.
18.
Calreticulin is a lectin chaperone of the endoplasmic reticulum (ER). In calreticulin‐deficient cells, major histocompatibility complex (MHC) class I molecules travel to the cell surface in association with a sub‐optimal peptide load. Here, we show that calreticulin exits the ER to accumulate in the ER–Golgi intermediate compartment (ERGIC) and the cis‐Golgi, together with sub‐optimally loaded class I molecules. Calreticulin that lacks its C‐terminal KDEL retrieval sequence assembles with the peptide‐loading complex but neither retrieves sub‐optimally loaded class I molecules from the cis‐Golgi to the ER, nor supports optimal peptide loading. Our study, to the best of our knowledge, demonstrates for the first time a functional role of intracellular transport in the optimal loading of MHC class I molecules with antigenic peptide.  相似文献   
19.
20.
Understanding fungal pathogenesis and host-pathogen immune interaction at various stages of infection is critical to examine strategies for bolstering antifungal immune defenses. Recombinant myeloid growth factors, especially granulocyte-macrophage colony-stimulating factor and the protagonist T helper (Th) 1 cytokine, interferon-γ, are most frequently used in patients with refractory invasive aspergillosis. These cytokines are given alone or in combination and have also been used together in neutropenic patients receiving donor granulocyte transfusions. Recently, a number of investigators have presented provoking data regarding auxiliary effect of conventional antifungal drugs on hosts’ immune response and pathogen’s susceptibility for antifungal immune defenses. Antifungal immunotherapy and its ameliorative role in treatment for Aspergillus disease will need clinical trials that 1) consider well-characterized fungal disease; 2) illustrate underlying immune defect(s) (such as Th1 vs Th2, vs Th17 and functional status of natural killer and effector scavenger cells); 3) include a more specific patient population; 4) include standardized antifungal drug therapy; and importantly 5) consider its impact on hosts’ immune response and changes in pathogen’s susceptibility and virulence. At present, immunotherapy is reserved for patients with life-threatening invasive fungal disease in whom conventional antifungal drug therapy has failed, or for patients with advanced fungal disease and with factors associated with high probability of failure of conventional therapy alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号