全文获取类型
收费全文 | 237篇 |
免费 | 14篇 |
国内免费 | 2篇 |
专业分类
253篇 |
出版年
2024年 | 2篇 |
2023年 | 5篇 |
2022年 | 8篇 |
2021年 | 20篇 |
2020年 | 8篇 |
2019年 | 19篇 |
2018年 | 18篇 |
2017年 | 7篇 |
2016年 | 13篇 |
2015年 | 14篇 |
2014年 | 12篇 |
2013年 | 14篇 |
2012年 | 15篇 |
2011年 | 15篇 |
2010年 | 13篇 |
2009年 | 11篇 |
2008年 | 16篇 |
2007年 | 3篇 |
2006年 | 6篇 |
2005年 | 8篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 2篇 |
排序方式: 共有253条查询结果,搜索用时 15 毫秒
41.
Abbas Shahsavari Mehdi Azad Naser Mobarra Koorosh Goodarzvand Chegini Nematollah Gheibi 《The protein journal》2016,35(5):363-370
Calprotectin is member of the S-100 protein family with a wide plethora of intra-and extracellular functions. Anticancer activities, antimicrobial effects and being a qualified disease marker are among the compelling features of this protein to be used as a pharmaceutical agent. However, there are several impediments to applications of protein pharmaceuticals including: proteolytic degradation, short circulating half-life, low solubility and immunogenicity. Pegylation is a common bioconjugation polymer capable of overcoming these drawbacks. Recombinant expression and purification of calprotectin along with its pegylation would result in enhanced pharmaco-dynamic and pharmacokinetic properties. Our florescence spectroscopy and far Ultraviolet-optical density results indicate that pegylation altered the physical and structural properties of the calprotectin to become in a more stable and functionally active state. Due to enhanced pharmacodynamic and pharmacokinetic properties of the calprotectin via pegylation, this study would pave the way for better in vitro and in vivo validations of calprotectin applications in medical practice. 相似文献
42.
Maryam Mansourpour Reza Mahjub Mohsen Amini Seyed Naser Ostad Elnaz Sadat Shamsa Morteza Rafiee- Tehrani Farid Abedin Dorkoosh 《AAPS PharmSciTech》2015,16(4):952-962
In this study, the use of trimethylchitosan (TMC), by higher solubility in comparison with chitosan, in alginate/chitosan nanoparticles containing cationic β-cyclodextrin polymers (CPβCDs) has been studied, with the aim of increasing insulin uptake by nanoparticles. Firstly, TMCs were synthesized by iodomethane, and CPβCDs were synthesized within a one-step polycondensation reaction using choline chloride (CC) and epichlorohydrine (EP). Insulin–CβCDPs complex was prepared by mixing 1:1 portion of insulin and CPβCDs solutions. Then, nanoparticles prepared in a three-step procedure based on the iono-tropic pregelation method. Nanoparticles screened using experimental design and Placket Burman methodology to obtain minimum size and polydispercity index (pdI) and the highest entrapment efficiency (EE). CPβCDs and TMC solution concentration and pH and alginate and calcium chloride solution concentrations are found as the significant parameters on size, PdI, and EE. The nanoparticles with proper physicochemical properties were obtained; the size, PdI, and EE% of optimized nanoparticles were reported as 150.82 ± 21 nm, 0.362 ± 0.036, and 93.2% ± 4.1, respectively. The cumulative insulin release in intestinal condition achieved was 50.2% during 6 h. By SEM imaging, separate, spherical, and nonaggregated nanoparticles were found. In the cytotoxicity studies on Caco-2 cell culture, no significant cytotoxicity was observed in 5 h of incubation, but after 24 h of incubation, viability was decreased to 50% in 0.5 mμ of TMC concentration. Permeability studies across Caco-2 cells had been carried out, and permeability achieved in 240 min was 8.41 ± 0.39%, which shows noticeable increase in comparison with chitosan nanoparticles. Thus, according to the results, the optimized nanoparticles can be used as a new insulin oral delivery system.KEY WORDS: alginate, cationic β-cyclodextrin, insulin nanoparticle, oral delivery, trimethyl chitosan 相似文献
43.
Elnaz Mehdizadeh Aghdam Lena Mahmoudi Azar Abolfazl Barzegari Farrokh Karimi Majid Mesbahfar Naser Samadi Mohammad Saeid Hejazi 《Gene》2012
Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H2O2 concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H2O2 concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H2O2 concentration of the cells. However, the H2O2 concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H2O2 elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H2O2 concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase. 相似文献
44.
Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme. 相似文献
45.
46.
Walid M. Naser Mohamed A. Shawarby Dalal M. Al-Tamimi Arun Seth Abdulaziz Al-Quorain Areej M. Al Nemer Omar M. E. Albagha 《PloS one》2014,9(11)
Introduction
In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province.Methods
Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling.Results
KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature.Conclusions
Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. 相似文献47.
48.
49.
Tabrizi MA Baraldi PG Preti D Romagnoli R Saponaro G Baraldi S Moorman AR Zaid AN Varani K Borea PA 《Bioorganic & medicinal chemistry》2008,16(5):2419-2430
A new series of 1,3-dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives has been identified as potent A(2B) adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A(2B), A(1), A(2A), and A(3) adenosine receptors. N-(4-chloro-phenyl)-2-[3-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-5-methyl-pyrazol-1-yl] (11c) showed a high affinity for the human A(2B) adenosine receptor K(i)=7nM and good selectivity (A(1), A(2A), A(3)/A(2B)>140). Synthesis and SAR of this novel class of compounds is presented herein. 相似文献