首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18824篇
  免费   974篇
  国内免费   21篇
  2023年   119篇
  2022年   271篇
  2021年   481篇
  2020年   286篇
  2019年   298篇
  2018年   468篇
  2017年   476篇
  2016年   578篇
  2015年   782篇
  2014年   858篇
  2013年   1236篇
  2012年   1343篇
  2011年   1249篇
  2010年   731篇
  2009年   683篇
  2008年   795篇
  2007年   809篇
  2006年   699篇
  2005年   606篇
  2004年   569篇
  2003年   469篇
  2002年   433篇
  2001年   386篇
  2000年   369篇
  1999年   287篇
  1998年   159篇
  1997年   138篇
  1996年   111篇
  1995年   135篇
  1994年   116篇
  1993年   107篇
  1992年   258篇
  1991年   260篇
  1990年   228篇
  1989年   211篇
  1988年   196篇
  1987年   195篇
  1986年   178篇
  1985年   202篇
  1984年   196篇
  1983年   131篇
  1982年   134篇
  1981年   119篇
  1980年   106篇
  1979年   171篇
  1978年   127篇
  1977年   110篇
  1974年   137篇
  1973年   103篇
  1972年   106篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
Assay of acetohydroxyacid synthase   总被引:18,自引:0,他引:18  
Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, has received attention recently because of the finding that it is the site of action of several new herbicides. The most commonly used assay for detecting the enzyme is spectrophotometric involving an indirect detection of the product acetolactate. The assay involves the conversion of the end product acetolactate to acetoin and the detection of acetoin via the formation of a creatine and naphthol complex. There is considerable variability in the literature as to the details of this assay. We have investigated a number of factors involved in detecting AHAS in crude ammonium sulfate precipitates using this spectrophotometric method. Substrate and cofactor saturation levels, pH optimum, and temperature optimum have been determined. We have also optimized a number of factors involved in the generation and the detection of acetoin from acetolactate. The results of these experiments can serve as a reference for new investigators in the study of AHAS.  相似文献   
152.
Three-dimensional structure of proteinase K at 0.15-nm resolution   总被引:3,自引:0,他引:3  
The crystal and molecular structure of proteinase K was determined by X-ray diffraction data to 0.15-nm resolution. The enzyme belongs to the subtilisin family with an active-site catalytic triad Asp39--His69--Ser224 but is a representative of a subgroup with a free Cys73 close to and 'below' the active His69. Besides this Cys72, proteinase K has two disulfide bonds, Cys34--Cys123 and Cys178--Cys249, which contribute to the stability of the tertiary structure consisting of an extended central parallel beta-sheet decorated by six alpha-helices, three short antiparallel beta-sheets, 18 beta-turns and involving several internal, structurally important water molecules. Proteinase K exhibits two Ca2+-binding sites, one very strong and the other weak, which were the sites of the heavy atoms (Pb2+, Sm3+) used to solve the crystal structure. The weak binding site is liganded to the N and C termini, Thr16 and Asp260, and is only incompletely coordinated by oxygen ligands. The strong binding site is coordinated in the form of a pentagonal bipyramid with the side chain carboxylate of Asp200 and the C = O of Pro175 as apex, and C = O of Val177 and four water molecules in the equatorial plane. Upon removal of this Ca2+, proteinase K loses activity which is interpreted in terms of a local structural deformation involving the substrate-recognition site (Ser132--Gly136), probably associated with a cis----trans isomerization of cis Pro171. Several water molecules are located in the active site. One, W335, is positioned in the 'oxyanion hole' and is displaced by the C = O of the scissile peptide bond of the substrate, as indicated by crystallographic studies with peptide chloromethane inhibitors. Based on these experiments, a reaction mechanism is proposed where the peptide substrate forms a three-stranded antiparallel pleated sheet with the recognition site of proteinase K consisting of Ser132--Leu133--Gly134 on one side and Gly100--Ser101 on the other, followed by expulsion of the oxyanion hole water W335 and hydrolytic cleavage by the Asp39--His69--Serr224 triad. These latter residues display low thermal motion corresponding to well-defined geometry and are hardly accessible to solvent molecules, whereas the recognition-site amino acids are more flexible and partially exposed to solvent.  相似文献   
153.
154.
155.
156.
We report the first resonance Raman scattering studies of NO-bound cytochrome c oxidase. Resonance Raman scattering and optical absorption spectra have been obtained on the fully reduced enzyme (a2+, a2+(3) NO) and the mixed valence enzyme (a3+, a2+(3) NO). Clear vibrational frequency shifts are detected in the lines associated with cytochrome a in comparing the two redox states. With 441.6 nm excitation the fully reduced preparation yields a spectrum similar to that of carbon monoxide-bound cytochrome c oxidase and is dominated by the spectrum of reduced cytochrome a. In contrast, in the mixed valence preparation no contributions from reduced cytochrome a are evident in the spectrum, verifying that this heme is no longer in the Fe2+ state. In the mixed valence NO-bound samples, a line appears at approximately 545 cm-1, a frequency similar to that found in NO-bound hemoglobin and myoglobin and assigned as an Fe-N-O-bending mode in those proteins. We do not detect this line in the spectrum of the fully reduced NO-bound enzyme. The carbonyl line of the cytochrome a3 heme formyl group in the fully reduced NO-bound enzyme appears at approximately equal to 1666 cm-1 in the resonance Raman spectrum. In the mixed valence NO-bound preparation the frequency of the carbonyl line increases by 1.2 cm-1 to approximately equal to 1667 cm-1. Thus, modes in cytochrome a2+(3) NO are sensitive to the redox state of the cytochrome a and/or CuA centers. We propose that the redox sensitivity of the formyl mode and the Fe-N-O mode results from an interaction between cytochrome a2+(3) (NO) and the cytochrome a-CuA pair, and is linked to the cytochrome a3 (NO) by the coupling between CuB and the NO-bound cytochrome a3 heme.  相似文献   
157.
Using minced brain cortex from fetal and postnatal rats, we studied the incorporation of [14C]-valine into protein in the presence of insulin. We also assayed the "particle bound" and soluble hexokinase in these tissues. Insulin significantly stimulated the incorporation of [14C]-valine into brain proteins from fetal stage upto 2 days of life. After this period the insulin effect was minimal, with no effect by day 5. The "particle bound" (40,000g pellet) brain hexokinase, on the other hand, remained low till about 2 days of life and then increased to almost adult level by 5 days. Our results show that there is an inverse relation between this anabolic effect of insulin and the "particle bound" hexokinase activity in the cortex of developing rat brain.  相似文献   
158.
We surveyed genetic polymorphism by two-dimensional gel electrophoresis of male reproductive tract proteins in 20 isofemale lines each ofDrosophila melanogaster andDrosophila simulans. After classifying 244 such proteins ofDrosophila melanogaster and 271 ofDrosophila simulans by their distribution between testes and accessory glands within the reproductive tract, significant correlations were found between genetic polymorphism and tissue distribution. In both species, gland-specific proteins were significantly more polymorphic than testis-specific proteins, as well as those found in both testes and glands. Simultaneously, inDrosophila simulans, proteins found in roughly equivalent relative abundance in both testes and glands were significantly less variable than gland-specific and testis-specific proteins, as well as those with a quantitative difference in relative abundance between testes and glands. These correlations may reflect general differences in variability between extracellular and intracellular proteins and between proteins with broad as opposed to tissue-specific distributions.We thank the Natural Sciences and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).  相似文献   
159.
Tryptophan (Trp) fluorescence quenching of phytochrome has been studied using anionic, cationic and neutral quenchers, I-, Cs+ and acrylamide, respectively, in an effort to understand the molecular differences between the Pr and Pfr forms. The data have been analyzed using both Stern-Volmer and modified Stern-Volmer kinetic treatments. The anionic quencher, I-, was proven to be an ineffective quencher with Stern-Volmer constants, Ksv, of 0.60 and 0.63 M-1, respectively, for the Pr and Pfr forms of phytochrome. The cationic quencher, Cs+, showed about a 2-fold difference in the Ksv of Pr and Pfr, indicating a significant change in the fluorescent Trp environments during the Pr to Pfr phototransformation. However, only 25-37% of the fluorescent Trp residues were accessible to the cationic quencher. Most of the fluorescent Trp residues were accessible to acrylamide, but the quenching by acrylamide was indistinguishable for the Pr and Pfr forms. An additional quenching by acrylamide after a saturated quenching with Cs+ showed more than 40% increase in the Ksv of Pfr over Pr. These observations, along with the finding of two distinct components in the Trp fluorescence lifetime, indicate the existence of Trp residues in at least two different sets of environments in the phytochrome protein. The two components of the fluorescence had lifetimes of 1.1 ns (major) and 4.7 ns (minor) for Pr and 0.9 ns (major) and 4.6 ns (minor) for Pfr. Fluorescence quenching was found to be both static and dynamic as the Stern-Volmer constants for the steady-state fluorescence quenching were higher than for the dynamic fluorescence quenching. Based on the quenching results, in combination with the location of Trp residues in the primary structure, we conclude that the Pr to Pfr phototransformation involves a significant conformation change in the phytochrome molecule, preferentially in the 74 kDa chromophore-bearing domain.  相似文献   
160.
Phosphatidate-mediated Ca2+ membrane traversal is inhibited by phospholipids (PL) such a phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin and lysoPC, but not by PC-plasmalogen. Kinetics of Ca2+ traversal through a 'passive' bilayer consisting of OH-blocked cholesterol show competition between PC and phosphatidic acid (PA); it appears likely that a Ca(PA.PC) complex is formed which is not a transmembrane ionophore but will reduce the amount of phosphatidic acid available for the formation of the ionophore, Ca(PA)2. PS and PI may inhibit Ca2+-traversal in the same manner by forming Ca(PA.PL) complexes. We suggest that PC-plasmalogen, with one of the Ca2+-chelating ester CO groups missing, cannot engage in calcium cages, i.e., Ca(PA.PL) complexes, and thus does not interfere with Ca(PA)2 formation. Double-reciprocal plotting of Ca2+ traversal rates in cholesterol-containing liposomes vs. calcium concentration suggests that cholesterol inhibits Ca2+ traversal by competing with Ca2+ for PA. The inhibition does not seem to be caused by a restructuring or dehydration of the membrane 'hydrogen belts' affected by cholesterol; most probably, it is due to hydrogen bonding of the cholesterol-OH group to a CO group of PA; this reduces the amount of PA available for the calcium ferry. The inhibition by sphingomyelin and lysoPC may also be explained by their OH group interacting with PA via hydrogen bonding. The pH dependence of Ca2+ traversal suggests that H[Ca(PA)2]- can serve as Ca2+ cross-membrane ferry but that at physiological pH, [Ca(PA)2]2- is the predominant ionophore. In conclusion, the results indicate that Ca2+ traversal is strongly dependent on the structure of the hydrogen belts, i.e., the membrane strata occupied by hydrogen bond acceptors (CO of phospholipids) and donors (OH of cholesterol, sphingosine), and that lipid hydrogen belt structures may regulate storage and passage of Ca2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号