首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   27篇
  437篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   10篇
  2020年   8篇
  2019年   11篇
  2018年   17篇
  2017年   9篇
  2016年   22篇
  2015年   23篇
  2014年   32篇
  2013年   22篇
  2012年   28篇
  2011年   31篇
  2010年   16篇
  2009年   14篇
  2008年   16篇
  2007年   15篇
  2006年   24篇
  2005年   26篇
  2004年   15篇
  2003年   15篇
  2002年   10篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1973年   1篇
  1971年   2篇
  1966年   1篇
排序方式: 共有437条查询结果,搜索用时 15 毫秒
351.
Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O2 responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca2+ transients, at least in some neurons: in maco-1 mutants the O2-sensing neuron PQR is unable to generate a Ca2+ response to a rise in O2. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O2, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca2+ channels, also fails to disrupt Ca2+ responses in the PQR cell body to O2 stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca2+ channel α1 subunit, recapitulate the Ca2+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators.  相似文献   
352.
In the current study, we evaluated the mechanism of action of miltefosine, which is the first effective and safe oral treatment for visceral leishmaniasis, in Leishmania amazonensis promastigotes. Miltefosine induced a process of programmed cell death, which was determined by the externalization of phosphatidylserine, the incorporation of propidium iodide, cell-cycle arrest at the sub-G0/G1 phase and DNA fragmentation into oligonucleosome-sized fragments. Despite the intrinsic variation that is detected in Leishmania spp, our results indicate that miltefosine causes apoptosis-like death in L. amazonensis promastigote cells using a similar process that is observed in Leishmania donovani.  相似文献   
353.
The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB.  相似文献   
354.
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B″ regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.Key words: HMG-CoA reductase, HMGR, mevalonate pathway, isoprenoid biosynthesis, protein phosphatase 2A, PP2A, salt stressPlant 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase or HMGR) was detected for the first time long ago1 and is modulated by many diverse endogenous signals and environmental factors. However, no protein factor interacting with and controlling plant HMGR in vivo had been described until recently.2 The finding that HMGR is under multilevel control by protein phosphatase 2A (PP2A)2 raises interesting hypotheses concerning the modulation of HMGR and, therefore, isoprenoid biosynthesis via the signal transduction network. In the present review we discuss these hypotheses, in connection the current knowledge on plant HMGR and PP2A. Other interesting reviews are available for a more detailed background on plant HMGR3,4 or PP2A.58  相似文献   
355.
356.
Temperature is one of the most important variables influencing organisms, especially in the intertidal zone. This work aimed to test physiological and molecular intraspecific differences in thermal tolerance of the crab Pachygrapsus marmoratus (Fabricius, 1787). The comparisons made focused on sex, size, and habitat (estuary and coast) differences. The physiological parameter was upper thermal limit, tested via the critical thermal maximum (CTMax) and the molecular parameter was total heat shock protein 70 (Hsp70 and Hsp70 plus Hsc70) production, quantified via an enzyme-linked imunosorbent assay. Results showed that CTMax values and Hsp70 production are higher in females probably due to different microhabitat use and potentially due to different hormonal regulation in males and females. Among females, non-reproducing ones showed a higher CTMax value, but no differences were found in Hsp70, even though reproducing females showed higher variability in Hsp70 amounts. As reproduction takes up a lot of energy, its allocation for other activities, including stress responses, is lower. Juveniles also showed higher CTMax and Hsp70 expression because they occur in greater shore heights and ageing leads to alterations in protein synthesis. Comparing estuarine and coastal crabs, no differences were found in CTMax but coastal crabs produce more Hsp70 than estuarine crabs because they occur in drier and hotter areas than estuarine ones, which occur in moister environments. This work shows the importance of addressing intraspecific differences in the stress response at different organizational levels. This study shows that these differences are key factors in stress research, climate research, and environmental monitoring.  相似文献   
357.
Developing and extending a biomedical ontology is a very demanding task that can never be considered complete given our ever-evolving understanding of the life sciences. Extension in particular can benefit from the automation of some of its steps, thus releasing experts to focus on harder tasks. Here we present a strategy to support the automation of change capturing within ontology extension where the need for new concepts or relations is identified. Our strategy is based on predicting areas of an ontology that will undergo extension in a future version by applying supervised learning over features of previous ontology versions. We used the Gene Ontology as our test bed and obtained encouraging results with average f-measure reaching 0.79 for a subset of biological process terms. Our strategy was also able to outperform state of the art change capturing methods. In addition we have identified several issues concerning prediction of ontology evolution, and have delineated a general framework for ontology extension prediction. Our strategy can be applied to any biomedical ontology with versioning, to help focus either manual or semi-automated extension methods on areas of the ontology that need extension.  相似文献   
358.
Bovine tuberculosis has been tackled for decades by costly eradication programs in most developed countries, involving the laboratory testing of tissue samples from allegedly infected animals for detection of Mycobacterium tuberculosis complex (MTC) members, namely Mycobacterium bovis. Definitive diagnosis is usually achieved by bacteriological culture, which may take up to 6–12 weeks, during which the suspect animal carcass and herd are under sanitary arrest. In this work, a user-friendly DNA extraction protocol adapted for tissues was coupled with an IS6110-targeted semi-nested duplex real-time PCR assay to enhance the direct detection of MTC bacteria in animal specimens, reducing the time to achieve a diagnosis and, thus, potentially limiting the herd restriction period. The duplex use of a novel β-actin gene targeted probe, with complementary targets in most mammals, allowed the assessment of amplification inhibitors in the tissue samples. The assay was evaluated with a group of 128 fresh tissue specimens collected from bovines, wild boars, deer and foxes. Mycobacterium bovis was cultured from 57 of these samples. Overall, the full test performance corresponds to a diagnostic sensitivity and specificity of 98.2% (CIP95% 89.4–99.9%) and 88.7% (CIP95% 78.5–94.7%), respectively. An observed kappa coefficient was estimated in 0.859 (CIP95% 0.771–0.948) for the overall agreement between the semi-nested PCR assay and the bacteriological culture. Considering only bovine samples (n = 69), the diagnostic sensitivity and specificity were estimated in 100% (CIP95% 84.0–100%) and 97.7% (CIP95% 86.2–99.9%), respectively. Eight negative culture samples exhibiting TB-like lesions were detected by the semi-nested real-time PCR, thus emphasizing the increased potential of this molecular approach to detect MTC-infected animal tissues. This novel IS6110-targeted assay allows the fast detection of tuberculous mycobacteria in animal specimens with very high sensitivity and specificity, being amenable and cost effective for use in the routine veterinary diagnostic laboratory with further automation possibilities.  相似文献   
359.
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec.  相似文献   
360.
Type 2 cytokines (IL-4, IL-5, and IL-13) play a pivotal role in helminthic infection and allergic disorders. CD4(+) T cells which produce type 2 cytokines can be generated via IL-4-dependent and -independent pathways. Although the IL-4-dependent pathway is well documented, factors that drive IL-4-independent Th2 cell differentiation remain obscure. We report here that the new cytokine IL-33, in the presence of Ag, polarizes murine and human naive CD4(+) T cells into a population of T cells which produce mainly IL-5 but not IL-4. This polarization requires IL-1R-related molecule and MyD88 but not IL-4 or STAT6. The IL-33-induced T cell differentiation is also dependent on the phosphorylation of MAPKs and NF-kappaB but not the induction of GATA3 or T-bet. In vivo, ST2(-/-) mice developed attenuated airway inflammation and IL-5 production in a murine model of asthma. Conversely, IL-33 administration induced the IL-5-producing T cells and exacerbated allergen-induced airway inflammation in wild-type as well as IL-4(-/-) mice. Finally, adoptive transfer of IL-33-polarized IL-5(+)IL-4(-)T cells triggered airway inflammation in naive IL-4(-/-) mice. Thus, we demonstrate here that, in the presence of Ag, IL-33 induces IL-5-producing T cells and promotes airway inflammation independent of IL-4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号