首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   777篇
  免费   48篇
  2023年   7篇
  2022年   15篇
  2021年   19篇
  2020年   7篇
  2019年   6篇
  2018年   14篇
  2017年   14篇
  2016年   21篇
  2015年   27篇
  2014年   42篇
  2013年   76篇
  2012年   61篇
  2011年   42篇
  2010年   39篇
  2009年   26篇
  2008年   46篇
  2007年   34篇
  2006年   29篇
  2005年   24篇
  2004年   30篇
  2003年   23篇
  2002年   27篇
  2001年   25篇
  2000年   19篇
  1999年   22篇
  1998年   8篇
  1997年   6篇
  1996年   11篇
  1995年   4篇
  1994年   7篇
  1992年   4篇
  1991年   4篇
  1989年   4篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1981年   3篇
  1979年   6篇
  1978年   4篇
  1976年   5篇
  1975年   10篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1968年   2篇
  1948年   2篇
排序方式: 共有825条查询结果,搜索用时 15 毫秒
291.
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However, intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells. Our Wnt signaling expression profiles revealed that phasic modulation of canonical/non-canonical axis enabled orderly recapitulation of cardiac developmental ontogeny. Moreover, evaluation of 8 hPSC lines showed marked commitment towards cardiac-mesoderm during the early phase of differentiation, with elevated levels of canonical Wnts (Wnt3 and 3a) and Mesp1. Whereas continued activation of canonical Wnts was counterproductive, its discrete inhibition during the later phase of cardiac differentiation was accompanied by significant up-regulation of non-canonical Wnt expression (Wnt5a and 11) and enhanced Nkx2.5+ (up to 98%) populations. These Nkx2.5+ populations transited to contracting cardiac troponin T-positive CMs with up to 80% efficiency. Our results suggest that timely modulation of Wnt pathways would transcend intrinsic differentiation biases of hPSCs to consistently generate functional CMs that could facilitate their scalable production for meaningful clinical translation towards personalized regenerative medicine.  相似文献   
292.
Structural rearrangements of chromosomes have played a decisive role in the karyotypic evolution of species. It is also known that inversions, translocations, fusions, fissions, heterochromatin variations and other chromosomal changes occur as transient events in natural populations. Herein we report the occurrence of a rare event of centric fission of a metacentric chromosome in a laboratory population ofDrosophila, called Cytorace 1. This centric fission has been fixed in a sub-population of Cytorace 1, resulting in a new chromosomal lineage called Fissioncytorace-1.  相似文献   
293.
A YAC library enriched for telomere clones was constructed and screened for the human telomere-specific repeat sequence (TTAGGG). Altogether 196 TYAC library clones were studied: 189 new TYAC clones were isolated, 149 STSs were developed for 132 different TYACs, and 39 P1 clones were identified using 19 STSs from 16 of the TYACs. A combination of mapping methods including fluorescencein situhybridization, somatic cell hybrid panels, clamped homogeneous electric fields, meiotic linkage, and BLASTN sequence analysis was utilized to characterize the resource. Forty-five of the TYACs map to 31 specific telomere regions. Twenty-four linkage markers were developed and mapped within 14 proterminal regions (12 telomeres and 2 terminal bands). The polymorphic markers include 12 microsatellites for 10 telomeres (1q, 2p, 6q, 7q, 10p, 10q, 13q, 14q, 18p, 22q) and the terminal bands of 11q and 12p. Twelve RFLP markers were identified and meiotically mapped to the telomeres of 2q, 7q, 8p, and 14q. Chromosome-specific STSs for 27 telomeres were identified from the 196 TYACs. More than 30,000 nucleotides derived from the TYAC vector-insert junction regions or from regions flanking TYAC microsatellites were compared to reported sequences using BLASTN. In addition to identifying homology with previously reported telomere sequences and human repeat elements, gene sequences and a number of ESTs were found to be highly homologous to the TYAC sequences. These genes include human coagulation factor V (F5), Wee1 protein tyrosine kinase (WEE1), neurotropic protein tyrosine kinase type 2 (NTRK2), glutathioneS-transferase (GST1), and β tubulin (TUBB). The TYAC/P1 resource, derivative STSs, and polymorphisms constitute an enabling resource to further studies of telomere structure and function and a means for physical and genetic map integration and closure.  相似文献   
294.
Perfluorooctane sulfonate (PFOS) is an endocrine disruptor chemical (EDC) with potentially adverse effects on the male reproductive system. Pachypodol (5,4′-dihydroxy-3,7,3′-trimethoxyflavone) is a promising flavonoid isolated from Pogostemon cablin (Blanco) Benth that shows a broad range of pharmacological properties. However, the potential curative effects of pachypodol on testicular toxicity are not available until now. Therefore, this research was proposed to examine the efficiency of pachypodol against PFOS-induced testicular toxicity in adult male rats. The experiments were conducted on Sprague-Dawley rats (n = 48), which were equally distributed into four groups: control, PFOS (20 mg/kg), PFOS + Pachypodol (20 mg/kg + 10 mg/kg respectively), and Pachypodol (10 mg/kg). After 56 days of treatment, testes were excised by slaughtering rats, weighed, and stored till further analysis. The estimated parameters include biochemical markers, spermatogenic indices, hormonal and histopathological profiles. PFOS exposure disturbed the biochemical profile by altering the antioxidant/oxidant balance. For instance, it decreased the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR) while increasing the concentration of reactive oxygen species (ROS) and level of thiobarbituric acid reactive substances (TBARS). PFOS intoxication also led to a notable decline in viability, motility, epididymal sperm count, and the number of HOS coiled-tail sperms, whereas the higher level of abnormality in the head, mid-piece, and tail of sperms were observed. Besides, it lowered luteinizing hormone (LH), follicle-stimulating hormone (FSH), and plasma testosterone. In addition, PFOS exposure led to histopathological damages in testicles. However, pachypodol treatment potently alleviated all the illustrated impairments in testes. Conclusively, our results demonstrate the promising free-radical scavenging activity of pachypodol, a novel phytochemical, against the PFOS-instigated testicular dysfunctions.  相似文献   
295.
Background Although cancer of the prostate is one of the most commonly diagnosed cancers in men, no curative treatment currently exists after its progression beyond resectable boundaries. Therefore, new agents for targeted treatment strategies are needed. Cross-linking of tumor antigens with T-cell associated antigens by bispecific monoclonal antibodies have been shown to increase antigen-specific cytotoxicity in T-cells. Since the prostate-specific membrane antigen (PSMA) represents an excellent tumor target, immunotherapy with bispecific diabodies could be a promising novel treatment option for prostate cancer. Methods A heterodimeric diabody specific for human PSMA and the T-cell antigen CD3 was constructed from the DNA of anti-CD3 and anti-PSMA single chain Fv fragments (scFv). It was expressed in E. coli using a vector containing a bicistronic operon for co-secretion of the hybrid scFv VHCD3-VLPSMA and VHPSMA-VLCD3. The resulting PSMAxCD3 diabody was purified from the periplasmic extract by immobilized metal affinity chromatography (IMAC). The binding properties were tested on PSMA-expressing prostate cancer cells and PSMA-negative cell lines as well as on Jurkat cells by flow cytometry. For in vitro functional analysis, a cell viability test (WST) was used. For in vivo evaluation the diabody was applied together with human peripheral blood lymphocytes (PBL) in a C4-2 xenograft-SCID mouse model. Results By Blue Native gel electrophoresis, it could be shown that the PSMAxCD3 diabody is mainly a tetramer. Specific binding both to CD3-expressing Jurkat cells and PSMA-expressing C4-2 cells was shown by flow cytometry. In vitro, the diabody proved to be a potent agent for retargeting PBL to lyze C4-2 prostate cancer cells. Treatment of SCID mice inoculated with C4-2 tumor xenografts with the diabody and PBL efficiently inhibited tumor growth. Conclusions The PSMAxCD3 diabody bears the potential for facilitating immunotherapy of prostate cancer and for the elimination of minimal residual disease. P. Bühler and P. Wolf equally contributed to the work.  相似文献   
296.
Summary The appearance of the first vertical wall in the terminal hemispherical cell of the proembryo ofPotamogeton indicus is indicative of the origin of the cotyledonary and epicotylary loci. The cotyledonary locus grows at a faster rate while the epicotylary region conspicuously lags behind. Topographically the cotyledonary and epicotylary loci are adjacent to each other, both being derived from the terminal tier of the proembryo. The subjacent tiers, including them tier, do not take part in the organization of the shoot apex but only contribute to the formation of the hypocotyl and root regions.  相似文献   
297.
Reports suggest a role of calpains in degradation of wild-type p53, which may regulate p53 induction of apoptosis. A calpain inhibitor, n-acetyl-leu-leu-norleucinal (calpain inhibitor 1), was assessed for ability to enhance p53-dependent apoptosis in human tumor cell lines with endogenous wild-type p53 and in altered p53 cell lines with the replacement of wild-type p53 by a recombinant adenovirus (rAd-p53). Calpain inhibitor 1 treatment resulted in increased levels of activated p53, increased p21 protein, and activation of caspases. Cell lines with wild-type, but not mutated or null, p53 status arrested in G0/G1 and were sensitive to calpain inhibitor-induced apoptosis. Regardless of endogenous p53 status, calpain inhibitor treatment combined with rAd-p53, but not empty vector virus, enhanced apoptosis in tumor cell lines. These results demonstrate p53-dependent apoptosis induced by a calpain inhibitor and further suggest a role for calpains in the regulation of p53 activity and induction of apoptotic pathways.  相似文献   
298.
299.
Journal of Plant Growth Regulation - In the present study, an activation-tagged (AT) rice line T8-Ds-RFP3 developed has been tested for its ability to combat drought and salinity stress conditions...  相似文献   
300.
The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydrate-binding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号