首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   64篇
  国内免费   3篇
  885篇
  2023年   7篇
  2022年   12篇
  2021年   24篇
  2020年   6篇
  2019年   17篇
  2018年   21篇
  2017年   19篇
  2016年   22篇
  2015年   29篇
  2014年   38篇
  2013年   45篇
  2012年   48篇
  2011年   55篇
  2010年   41篇
  2009年   35篇
  2008年   43篇
  2007年   43篇
  2006年   29篇
  2005年   25篇
  2004年   29篇
  2003年   32篇
  2002年   19篇
  2001年   13篇
  2000年   21篇
  1999年   11篇
  1998年   13篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   9篇
  1993年   5篇
  1992年   14篇
  1991年   10篇
  1989年   10篇
  1988年   9篇
  1987年   4篇
  1986年   5篇
  1985年   15篇
  1984年   6篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1977年   4篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1972年   5篇
  1967年   5篇
  1966年   5篇
排序方式: 共有885条查询结果,搜索用时 15 毫秒
71.
Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.  相似文献   
72.
73.
The emergence of multidrug-resistant Mycobacterium tuberculosis (M.tb) has become one of the major hurdles in the treatment of tuberculosis (TB). Drug-resistant M.tb has evolved with various strategies to avoid killing by the anti-tubercular drugs. Thus, there is a rising need to develop effective anti-TB drugs to improve the treatment of these strains. Traditional drug design approach has earned little success due to time and the cost involved in the process of development of anti-infective drugs. Numerous reports have demonstrated that several mutations in the drug target sites cause emergence of drug-resistant M.tb strains. In this study, we performed computational mutational analysis of M.tb inhA, fabD, and ahpC genes, which are the primary targets for first-line isoniazid (INH) drug. In silico virtual drug screening was performed to identify the potent drugs from a ChEMBL compound library to improve the treatment of INH-resistant M.tb. Further, these compounds were analyzed for their binding efficiency against active drug binding cavity of M.tb wild-type and mutant InhA, FabD and AhpC proteins. The drug efficacy of predicted lead compounds was verified by molecular docking using M.tb wild-type and mutant InhA, FabD and AhpC protein template models. Different in silico and pharmacophore analysis predicted three potent lead compounds with better drug-like properties against both M.tb wild-type and mutant InhA, FabD, and AhpC proteins as compared to INH drug, and thus may be considered as effective drugs for the treatment of INH-resistant M.tb strains. We hypothesize that this work may accelerate drug discovery process for the treatment of drug-resistant TB.

Communicated by Ramaswamy H. Sarma  相似文献   

74.
Experiments were performed to examine whether the protein phosphatase inhibitor cantharidin blocks the anti-adrenergic effect of adenosine A(1) receptor stimulation. In electrically stimulated adult rat ventricular myocytes loaded with the intracellular calcium concentration ([Ca(2+)](i)) indicator fluo-3, isoproterenol (10 nM) increased systolic [Ca(2+)](i) by 46%, increased twitch amplitude by 56%, and increased total cellular cAMP content by 140%. The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentlyadenosine (CCPA) reduced isoproterenol-stimulated [Ca(2+)](i) and contractility by 87 and 80%, respectively, but reduced cAMP content by only 18%. Cantharidin had no effects on myocyte [Ca(2+)](i), contractility, or cAMP in the absence or presence of isoproterenol but blocked the effects of CCPA on [Ca(2+)](i) and contractility by approximately 44%. Cantharidin had no effect on CCPA attenuation of isoproterenol-induced increases in cAMP. Pretreatment with CCPA also reduced the increase in contractile parameters produced by the direct cAMP-dependent protein kinase A (PKA) activator 8-bromocAMP. These results suggest that activation of protein phosphatases mediate, in part, the anti-adrenergic effect of adenosine A(1) receptor activation in ventricular myocardium.  相似文献   
75.
DNA helicases are molecular motors that use the energy from NTP hydrolysis to drive the process of duplex DNA strand separation. Here, we measure the translocation and energy coupling efficiency of a replicative DNA helicase from bacteriophage T7 that is a member of a class of helicases that assembles into ring-shaped hexamers. Presteady state kinetics of DNA-stimulated dTTP hydrolysis activity of T7 helicase were measured using a real time assay as a function of ssDNA length, which provided evidence for unidirectional translocation of T7 helicase along ssDNA. Global fitting of the kinetic data provided an average translocation rate of 132 bases per second per hexamer at 18 degrees C. While translocating along ssDNA, T7 helicase hydrolyzes dTTP at a rate of 49 dTTP per second per hexamer, which indicates that the energy from hydrolysis of one dTTP drives unidirectional movement of T7 helicase along two to three bases of ssDNA. One of the features that distinguishes this ring helicase is its processivity, which was determined to be 0.99996, which indicated that T7 helicase travels on an average about 75kb of ssDNA before dissociating. We propose that the ability of T7 helicase to translocate unidirectionally along ssDNA in an efficient manner plays a crucial role in DNA unwinding.  相似文献   
76.
77.
Nitrosative stress has recently been demonstrated as a causal in a select sporadic variant of Parkinson’s (PD) and Alzheimer’s (AD) diseases. Specifically, elevated levels of NO disrupt the redox activity of protein-disulfide isomerase, a key endoplasmic reticulum-resident chaperone by S-nitroso modification of its redox-active cysteines. This leads to accumulation of misfolded AD- and PD-specific protein debris. We have recently demonstrated in vitro that polyphenolic phytochemicals, curcumin and masoprocol, can rescue S-nitroso-PDI formation by scavenging NOx. In this study, using dopaminergic SHSY-5Y cells, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1 (a known constituent of PD Lewy neurites) as a function of rotenone-induced nitrosative stress. Importantly, we demonstrate a marked decrease in synphilin-1 aggregation when the cell line is previously incubated with 3,5-bis(2-flurobenzylidene) piperidin-4-one (EF-24), a curcumin analogue, prior to rotenone insult. Furthermore, our data also reveal that rotenone attenuates PDI expression in the same cell line, a phenomenon that can be mitigated through EF-24 intervention. Together, these results suggest that EF-24 can exert neuroprotective effects by ameliorating nitrosative stress-linked damage to PDI and the associated onset of PD and AD. Essentially, EF-24 can serve as a scaffold for the design and development of PD and AD specific prophylactics.  相似文献   
78.
Effects of exogenous gibberellic acid (GA; 10 and 100 μM) application on growth, protein and nitrogen contents, ammonium (NH4 +) content, enzymes of nitrogen assimilation and antioxidant system in pea seedlings were investigated under chromium (VI) phytotoxicity (Cr VI; 50, 100 and 250 μM). Exposure of pea seedlings to Cr and 100 μM GA resulted in decreased seed germination, fresh and dry weight and length of root and shoot, and protein and nitrogen contents compared to control. Compared to control, Cr and 100 μM GA led to the significant alteration in nitrogen assimilation in pea. These treatments decreased root and shoot nitrate reductase (NR), glutamine synthetase (GS) and glutamine 2-oxoglutarate aminotransferase (GOGAT) activities (except 50 μM Cr alone for GOGAT) while glutamate dehydrogenase (GDH) activity and NH4 + content increased. Compared to control, the root and shoot activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased (except APX activity at 250 μM Cr + 100 μM GA) while catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities were decreased (except GR at 100 μM GA alone) following exposure of Cr and 100 μM GA. Total ascorbate and total glutathione in root and shoot decreased by the treatments of Cr and 100 μM GA while their levels were increased by the application of 10 μM GA compared to Cr treatments alone. It has been reported that application of 10 μM GA together with Cr alleviated inhibited levels of growth, nitrogen assimilation and antioxidant system compared to Cr treatments alone. This study showed that application of 10 μM GA counteracts some of the adverse effects of Cr phytotoxicity with the increased levels of antioxidants and sustained activities of enzymes of nitrogen assimilation; however, 100 μM GA showed apparently reverse effect under Cr phytotoxicity.  相似文献   
79.
The guanidinium chloride- and urea-induced unfolding of FprA, a mycobacterium NADPH-ferredoxin reductase, was examined in detail using multiple spectroscopic techniques, enzyme activity measurements and size exclusion chromatography. The equilibrium unfolding of FprA by urea is a cooperative process where no stabilization of any partially folded intermediate of protein is observed. In comparison, the unfolding of FprA by guanidinium chloride proceeds through intermediates that are stabilized by interaction of protein with guanidinium chloride. In the presence of low concentrations of guanidinium chloride the protein undergoes compaction of the native conformation; this is due to optimization of charge in the native protein caused by electrostatic shielding by the guanidinium cation of charges on the polar groups located on the protein side chains. At a guanidinium chloride concentration of about 0.8 m, stabilization of apo-protein was observed. The stabilization of apo-FprA by guanidinium chloride is probably the result of direct binding of the Gdm+ cation to protein. The results presented here suggest that the difference between the urea- and guanidinium chloride-induced unfolding of FprA could be due to electrostatic interactions stabilizating the native conformation of this protein.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号