首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1164篇
  免费   81篇
  国内免费   6篇
  1251篇
  2023年   9篇
  2022年   15篇
  2021年   32篇
  2020年   10篇
  2019年   22篇
  2018年   30篇
  2017年   25篇
  2016年   25篇
  2015年   40篇
  2014年   61篇
  2013年   68篇
  2012年   71篇
  2011年   82篇
  2010年   56篇
  2009年   53篇
  2008年   63篇
  2007年   75篇
  2006年   52篇
  2005年   41篇
  2004年   49篇
  2003年   49篇
  2002年   33篇
  2001年   18篇
  2000年   25篇
  1999年   16篇
  1998年   16篇
  1997年   10篇
  1996年   10篇
  1995年   9篇
  1994年   11篇
  1993年   5篇
  1992年   12篇
  1991年   10篇
  1989年   10篇
  1988年   11篇
  1987年   5篇
  1986年   5篇
  1985年   16篇
  1984年   8篇
  1982年   8篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   5篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1972年   5篇
  1967年   5篇
  1966年   5篇
排序方式: 共有1251条查询结果,搜索用时 0 毫秒
71.
During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1.  相似文献   
72.
Labeling of released asparagine-linked (N-linked) oligosaccharides from glycoproteins is commonly performed to aid in the separation and detection of the oligosaccharide. Of the many available oligosaccharide labels, 2-amino benzamide (2-AB) is a popular choice for providing a fluorescent product. The derivatization conditions can potentially lead to oligosaccharide desialylation. This work evaluated the extent of sialic acid loss during 2-AB labeling of N-linked oligosaccharides released from bovine fetuin, polyclonal human serum immunoglobulin G (IgG), and human α1-acid glycoprotein (AGP) as well as of sialylated oligosaccharide reference standards and found that for more highly sialylated oligosaccharides the loss is greater than the <2% value commonly cited. Manufacturers of glycoprotein biotherapeutics need to produce products with a consistent state of sialylation and, therefore, require an accurate assessment of glycoprotein sialylation.  相似文献   
73.
74.
The new coarse graining model PRIMO/PRIMONA for proteins and nucleic acids is proposed. This model combines one to several heavy atoms into coarse‐grained sites that are chosen to allow an analytical, high‐resolution reconstruction of all‐atom models based on molecular bonding geometry constraints. The accuracy of proposed reconstruction method in terms of structure and energetics is tested and compared with other popular reconstruction methods for a variety of protein and nucleic acid test sets. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
75.
76.
The present study examines the effects of 30 mg/kg butachlor on the cyanobacterial diversity of rice fields in Eastern Uttar Pradesh and Western Bihar in India. A total of 40 samples were grouped into three classes [(i) acidic, (ii) neutral, and (iii) alkaline soils], based on physicochemical and principle component analyses. Acidic soils mainly harbored Westillopsis, Trichormus, Anabaenopsis, and unicellular cyanobacteria; whereas Nostoc, Anabaena, Calothrix, Tolypothrix, and Aulosira were found in neutral and alkaline soils. Molecular characterization using 16S rRNA PCR and DGGE revealed the presence of 13 different phylotypes of cyanobacteria in these samples. Butachlor treatment of the soil samples led to the disappearance of 5 and the emergence of 2 additional phylotypes. A total of 40 DGGE bands showed significant reproducible changes upon treatment with butachlor. Phylogenetic analyses divided the phylotypes into five major clusters exhibiting interesting links with soil pH. Aulosira, Anabaena, Trichormus, and Anabaenopsis were sensitive to butachlor treatment, whereas uncultured cyanobacteria, a chroococcalean member, Westillopsis, Nostoc, Calothrix, Tolypothrix, Rivularia, Gloeotrichia, Fischerella, Leptolyngbya, and Cylindrospermum, appeared to be tolerant against butachlor at their native soil pH. Butachlor-induced inhibition of nitrogen fixation was found to be 65% (maximum) and 33% (minimum) in the soil samples of pH 9.23 and 5.20, respectively. In conclusion, low butachlor doses may prove beneficial in paddy fields having a neutral to alkaline soil pH.  相似文献   
77.
78.
Two-deoxy-D-glucose (2-DG), an inhibitor of glycolysis differentially enhances the radiation and chemotherapeutic drug induced cell death in cancer cells in vitro, while the local tumor control (tumor regression) following systemic administration of 2-DG and focal irradiation of the tumor results in both complete (cure) and partial response in a fraction of the tumor bearing mice. In the present studies, we investigated the effects of systemically administered 2-DG and focal irradiation of the tumor on the immune system in Ehrlich ascites tumor (EAT) bearing Strain “A” mice. Markers of different immune cells were analyzed by immune-flow cytometry and secretary cytokines by ELISA, besides monitoring tumor growth. Increase in the expression of innate (NK and monocytes) and adaptive CD4+cells, and a decrease in B cells (CD19) have been observed after the combined treatment, suggestive of activation of anti-tumor immune response. Interestingly, immature dendritic cells were found to be down regulated, while their functional markers CD86 and MHC II were up regulated in the remaining dendritic cells following the combination treatment. Similarly, decrease in the CD4+ naïve cells with concomitant increase in activated CD4+ cells corroborated the immune activation. Further, a shift from Th2 and Th17 to Th1 besides a decrease in inflammatory cytokines was also observed in the animals showing complete response (cure; tumor free survival). This shift was also complimented by respective antibody class switching followed by the combined treatment. The immune activation or alteration in the homeostasis favoring antitumor immune response may be due to depletion in T regulatory cells (CD4+CD25+FoxP3+). Altogether, these results suggest that early differential immune activation is responsible for the heterogenous response to the combined treatment. Taken together, these studies for the first time provided insight into the additional mechanisms underlying radio-sensitization by 2-DG in vivo by unraveling its potential as an immune-modulator besides direct effects on the tumor.  相似文献   
79.
As drug-binding kinetics has become an important factor to be considered in modern drug discovery, this work evaluated the ability of the Milestoning method in computing the absolute dissociation rate of a ligand from the serine–threonine kinase, glycogen synthase kinase 3β, which is a target for designing drugs to treat diseases such as neurodegenerative disorders and diabetes. We found that the Milestoning method gave good agreement with experiment with modest computational costs. Although the time scale for dissociation lasted tens of seconds, the collective molecular dynamics simulations total less than 1μs. Computing the committor function helped to identify the transition states (TSs), in which the ligand moved substantially away from the binding pocket. The glycine-rich loop with a serine residue attaching to its tips was found to undergo large movement from the bound to the TSs and might play a role in controlling drug-dissociation kinetics.  相似文献   
80.
The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号