首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   69篇
  国内免费   3篇
  2023年   7篇
  2022年   12篇
  2021年   24篇
  2020年   6篇
  2019年   19篇
  2018年   22篇
  2017年   19篇
  2016年   24篇
  2015年   30篇
  2014年   40篇
  2013年   49篇
  2012年   50篇
  2011年   57篇
  2010年   42篇
  2009年   35篇
  2008年   43篇
  2007年   43篇
  2006年   29篇
  2005年   27篇
  2004年   32篇
  2003年   35篇
  2002年   21篇
  2001年   16篇
  2000年   21篇
  1999年   12篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   5篇
  1992年   13篇
  1991年   10篇
  1989年   8篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   15篇
  1984年   6篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1977年   4篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1972年   5篇
  1967年   5篇
  1966年   5篇
排序方式: 共有916条查询结果,搜索用时 15 毫秒
811.
812.
The mammalian AlkB homologue-3 (AlkBH3) is a member of the dioxygenase family of enzymes that in humans is involved in DNA dealkylation repair. Because of its role in promoting tumor cell proliferation and metastasis of cancer, extensive efforts are being directed in developing selective inhibitors for AlkBH3. Here we report synthesis, screening and evaluation of panel of arylated indenone derivatives as new class of inhibitors of AlkBH3 DNA repair activity. An efficient synthesis of 2,3-diaryl indenones from 2,3-dibromo indenones was achieved via Suzuki-Miyaura cross-coupling. Using a robust quantitative assay, we have obtained an AlkBH3 inhibitor that display specific binding and competitive mode of inhibition against DNA substrate. Finally, we established that this compound could prevent the proliferation of lung cancer cell line and enhance sensitivity to DNA damaging alkylating agent.  相似文献   
813.

Background

Amorphous silica nanoparticles (aSNPs) are used for various applications including food industry. However, limited in vivo studies are available on absorption/internalization of ingested aSNPs in the midgut cells of an organism. The study aims to examine cellular uptake of aSNPs (< 30 nm) in the midgut of Drosophila melanogaster (Oregon R+) owing to similarities between the midgut tissue of this organism and human and subsequently cellular stress response generated by these nanoparticles.

Methods

Third instar larvae of D. melanogaster were exposed orally to 1–100 μg/mL of aSNPs for 12–36 h and oxidative stress (OS), heat shock genes (hsgs), membrane destabilization (Acridine orange/Ethidium Bromide staining), cellular internalization (TEM) and apoptosis endpoints.

Results

A significant increase was observed in OS endpoints in the midgut cells of exposed Drosophila in a concentration- and time-dependent manner. Significantly increased expression of hsp70 and hsp22 along with caspases activation, membrane destabilization and mitochondrial membrane potential loss was also observed. TEM analysis showed aSNPs-uptake in the midgut cells of exposed Drosophila via endocytic vesicles and by direct membrane penetration.

Conclusion

aSNPs after their internalization in the midgut cells of exposed Drosophila larvae show membrane destabilization along with increased cellular stress and cell death.

General significance

Ingested aSNPs show adverse effects on the cells of GI tract of the exposed organism thus their industrial use as a food-additive may raise concern to human health.  相似文献   
814.
Prostaglandin endoperoxide H synthase-2 (PGHS-2), also known as cyclooxygenase-2 (COX-2), is a sequence homodimer. However, the enzyme exhibits half-site heme and inhibitor binding and functions as a conformational heterodimer having a catalytic subunit (Ecat) with heme bound and an allosteric subunit (Eallo) lacking heme. Some recombinant heterodimers composed of a COX-deficient mutant subunit and a native subunit (i.e. Mutant/Native PGHS-2) have COX activities similar to native PGHS-2. This suggests that the presence of heme plus substrate leads to the subunits becoming lodged in a semi-stable Eallo-mutant/Ecat-Native∼heme form during catalysis. We examined this concept using human PGHS-2 dimers composed of combinations of Y385F, R120Q, R120A, and S530A mutant or native subunits. With some heterodimers (e.g. Y385F/Native PGHS-2), heme binds with significantly higher affinity to the native subunit. This correlates with near native COX activity for the heterodimer. With other heterodimers (e.g. S530A/Native PGHS-2), heme binds with similar affinities to both subunits, and the COX activity approximates that expected for an enzyme in which each monomer contributes equally to the net COX activity. With or without heme, aspirin acetylates one-half of the subunits of the native PGHS-2 dimer, the Ecat subunits. Subunits having an S530A mutation are refractory to acetylation. Curiously, aspirin acetylates only one-quarter of the monomers of S530A/Native PGHS-2 with or without heme. This implies that there are comparable amounts of two noninterchangeable species of apoenzymes, Eallo-S530A/Ecat-Native and Eallo-Native/Ecat-S530A. These results suggest that native PGHS-2 assumes a reasonably stable, asymmetric Eallo/Ecat form during its folding and processing.  相似文献   
815.
Abstract

Syntheses of 4- and 7-methyl 4, 5, 7, 8-tetrahydro-6H-3-(β-ribofuranosyl)imidazo[4, 5-e] [1, 4]diazepine-5, 8-dione, 3 and 1, respectively, are reported. Single-crystal X-ray diffraction analysis of the aglycon of 3 aided in confirming the site of methylation in 3, and that of 4 in elucidating the solid state conformation of 4. Solution conformations of 3 and 4, along with their parent nucleoside 1 and the latter's 1-glycosyl regioisomer 2, were investigated by NOE and CD measurements.  相似文献   
816.
Mitochondria play a central role not only in energy production but also in the integration of metabolic pathways as well as signals for apoptosis and autophagy. It is becoming increasingly apparent that mitochondria in mammalian cells play critical roles in the initiation and propagation of various signaling cascades. In particular, mitochondrial metabolic and respiratory states and status on mitochondrial genetic instability are communicated to the nucleus as an adaptive response through retrograde signaling. Each mammalian cell contains multiple copies of the mitochondrial genome (mtDNA). A reduction in mtDNA copy number has been reported in various human pathological conditions such as diabetes, obesity, neurodegenerative disorders, aging and cancer. Reduction in mtDNA copy number disrupts mitochondrial membrane potential (Δψm) resulting in dysfunctional mitochondria. Dysfunctional mitochondria trigger retrograde signaling and communicate their changing metabolic and functional state to the nucleus as an adaptive response resulting in an altered nuclear gene expression profile and altered cell physiology and morphology. In this review, we provide an overview of the various modes of mitochondrial retrograde signaling focusing particularly on the Ca2 +/Calcineurin mediated retrograde signaling. We discuss the contribution of the key factors of the pathway such as Calcineurin, IGF1 receptor, Akt kinase and HnRNPA2 in the propagation of signaling and their role in modulating genetic and epigenetic changes favoring cellular reprogramming towards tumorigenesis.  相似文献   
817.
We present a method for identifying biomarkers in human lung injury. The method is based on high-resolution nuclear magnetic resonance (NMR) spectroscopy applied to bronchoalveolar lavage fluid (BALF) collected from lungs of critically ill patients. This biological fluid can be obtained by bronchoscopic and non-bronchoscopic methods. The type of lung injury in acute respiratory failure presenting as acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), continues to challenge critical care physicians. We characterize different metabolites in BAL fluid by non-bronchoscopic method (mBALF) for better diagnosis and understanding of ALI/ARDS by NMR spectroscopy. NMR spectra of mBALF collected from 30 patients (9 controls, 10 ARDS and 11 ALI) were analyzed for the identification of biomarkers. Statistical methods such as principal components analysis and partial least square discriminant analysis were carried out on 1H NMR spectrum of mBALF to identify biomarker responsible for separation among different lung injuries classes (ALI and ARDS) and normal lungs. The corresponding correlation of biomarkers with metabolic cycle has given insight into metabolism of lung injuries in critically ill patients. Our study shows statistically significant differentiation of various metabolites concentration in mBALF collected from lungs of ALI, ARDS and healthy control patients, making NMR spectroscopy as a possible new method of characterizing human lung injury.  相似文献   
818.
819.

Biofilm development on titanium panels immersed in the surface waters of Dona Paula Bay was investigated using molecular biomarkers such as n-alkanes and other chemical and biological parameters. Biofilm biomass measured as organic carbon (OC), organic nitrogen (ON), chlorophyll a, diatoms and bacterial numbers on the titanium panels generally increased over the period of immersion. Total lipids and n-alkane concentration also showed similar trends. n-alkanes from C12 to C30 were detected in the biofilm samples, which showed a bimodal distribution. The first mode consisted of n-alkanes > C23 with a strong even over odd predominance. In the second mode, the n-alkanes < C23 were more abundant with odd carbon number maxima at C15, C17 and C19 and a strong odd over even carbon number predominance (Carbon Preference Index > 2). The predominance of these odd-chain n-alkanes strongly indicates that the organic matter derived from macroalgal sources was the major contributor to the biofilm organic matter developed on the titanium panels over the 15 d period of study. The data suggest that molecular characterization is a useful tool in understanding the sources of biofilm organic matter. The observed abundance of macroalgal organic matter during the 15 d period of biofilm development may play an important role in subsequent fouling by micro- and macrofouling organisms.  相似文献   
820.
Stem bark of Oroxylum indicum (L) (SBOI) is used by ethnic communities of North East India as health tonic and in treating diseases of humans and animals. The objective of this research was to carry out a detailed investigation including total phenolic and flavonoid content, antioxidant, antimicrobial, cytotoxic and apoptotic activities of different solvent extracts of SBOI and to establish correlation between some parameters. Among petroleum ether (PE), dichloromethane and methanol (MeOH) extract of SBOI, MeOH extract contained the highest amount of total phenolic (320.7 ± 34.6 mg Gallic acid equivalent/g extract) and flavonoid (346.6 ± 15.2 mg Quercetin equivalent/g extract) content. In vitro antioxidant activity (IC50 22.7 μg/ml) was highest in MeOH extract (p > 0.05) and also a significant inverse correlation was observed between phenolic (r = 0.886)/flavonoid (r = 0.764) content and corresponding DPPH IC50. Only MeOH extract inhibited both bacteria and fungi. Although, individual extract showed cytotoxicity on HeLa cells with characteristic features of apoptosis, PE extract caused maximum cytotoxicity (IC50 of 112.3 μg/ml, p < 0.05) and apoptotic activity (33.2 % sub-G0/G1 population) on HeLa cells. But, there was a significant non-inverse correlation of the MTT IC50 with total phenolic (r = 0.812, p < 0.05)/flavonoid (r = 0.998, p < 0.05) content in the three solvent extracts. TLC analysis showed three unique compounds in PE extract which may have a role in apoptosis mediated cytotoxicity. These results called for futher chemical characterisation of MeOH and PE extract of SBOI for specific bioactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号