首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2038篇
  免费   169篇
  国内免费   4篇
  2023年   15篇
  2022年   19篇
  2021年   48篇
  2020年   12篇
  2019年   34篇
  2018年   44篇
  2017年   35篇
  2016年   41篇
  2015年   78篇
  2014年   98篇
  2013年   126篇
  2012年   132篇
  2011年   132篇
  2010年   92篇
  2009年   79篇
  2008年   115篇
  2007年   109篇
  2006年   105篇
  2005年   72篇
  2004年   77篇
  2003年   64篇
  2002年   53篇
  2001年   36篇
  2000年   47篇
  1999年   40篇
  1998年   25篇
  1997年   22篇
  1996年   19篇
  1995年   19篇
  1994年   25篇
  1993年   15篇
  1992年   37篇
  1991年   25篇
  1990年   22篇
  1989年   23篇
  1988年   20篇
  1985年   23篇
  1984年   11篇
  1983年   13篇
  1982年   13篇
  1979年   12篇
  1977年   12篇
  1976年   13篇
  1975年   13篇
  1974年   14篇
  1973年   9篇
  1972年   16篇
  1971年   12篇
  1967年   11篇
  1966年   14篇
排序方式: 共有2211条查询结果,搜索用时 127 毫秒
331.
Prostaglandin F2alpha (PGF2alpha) increases reactive oxygen species (ROS) and induces vascular smooth muscle cell (VSMC) hypertrophy by largely unknown mechanism(s). To investigate the signaling events governing PGF2alpha-induced VSMC hypertrophy we examined the ability of the PGF2alpha analog, fluprostenol to elicit phosphorylation of Akt, the mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6k), glycogen synthase kinase-3beta (GSK-3beta), phosphatase and tensin homolog (PTEN), extracellular signal-regulated kinase 1/2 (ERK1/2) and Jun N-terminal kinase (JNK) in growth arrested A7r5 VSMC. Fluprostenol-induced hypertrophy was associated with increased ROS, mTOR translocation from the nucleus to the cytoplasm, along with Akt, mTOR, GSK-3beta, PTEN and ERK1/2 but not JNK phosphorylation. Whereas inhibition of phosphatidylinositol 3-kinase (PI3K) by LY-294002 blocked fluprostenol-induced changes in total protein content, pre-treatment with rapamycin or with the MEK1/2 inhibitor U0126 did not. Taken together, these findings suggest that fluprostenol-induced changes in A7r5 hypertrophy involve mTOR translocation and occur through PI3K-dependent mechanisms.  相似文献   
332.
Biosurfactants have gained attention because they exhibit some advantages such as biodegradability, low toxicity, ecological acceptability and ability to be produced from renewable and cheaper substrates. They are widely used for environmental applications for bioremediation and also in biomedical field. However, the high cost of production is the limiting factor for widespread industrial applications. Thus, optimization of the growth medium for biosurfactant-lichenysin production by Bacillus licheniformis R2 was carried out using response-surface methodology. A preliminary screening phase based on a two-level fractional factorial design led to the identification of NH4NO3, glucose, Na2HPO4 and MnSO4·4H2O concentrations as the most significant variables affecting the fermentation process. The 24 full-factorial central composite design was then applied to further optimize the biosurfactant production. The optimal levels of the aforementioned variables were (g/l): NH4NO3, 1.0; glucose, 34.0; KH2PO4, 6.0; Na2HPO4, 2.7; MgSO4·7H2O, 0.1; CaCl2, 1.2 × 10−3; FeSO4·7H2O, 1.65 × 10−3; MnSO4·4H2O, 1.5 × 10−3 and Na–EDTA, 2.2 × 10−3. With the optimization procedure, the relative lichenysin yield expressed as the critical micelle dilution (CMD) was fourfold higher than that obtained in the non-optimized reference medium.  相似文献   
333.
Molecular architecture of the kinetochore-microtubule interface   总被引:1,自引:0,他引:1  
Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.  相似文献   
334.
Metabolites of lutein are highly concentrated in the human macula and are known to provide protection against age-related macular degeneration. The aim of this investigation was to characterize the in vitro oxidation products of lutein obtained through photo-oxidation and to compare them with biologically transformed dietary lutein in intestine, plasma, liver, and eyes of rats. In vivo studies involved feeding rats a diet devoid of lutein for 2 weeks to induce deficiency. Rats were divided into two equal groups (n=6/group) and received either micellar lutein by gavage for 10 days or diet supplemented with fenugreek leaves as a lutein source for 4 weeks. Lutein metabolites/oxidation products obtained from in vivo and in vitro studies were characterized by HPLC and LC-MS (APCI) techniques to elucidate their structure. The characteristic fragmented ions resulting from photo-oxidation of lutein were identified as 523 (M(+)+H(+)-3CH(3)), 476 (M(+)+H(+)-6CH(3)), and 551 (M(+)+H(+)-H(2)O). In the eyes, the fragmented molecules resulting from lutein were 13-Z lutein, 13'-Z lutein, 13-Z zeaxanthin, all-E zeaxanthin, 9-Z lutein, 9'-Z lutein, and 3'-oxolutein. Epoxycarotenoids were identified in liver and plasma, whereas anhydrolutein was identified in intestine. This study emphasizes the essentiality of dietary lutein to maintain its status in the retina.  相似文献   
335.
336.
337.
Homing endonucleases typically contain one of four conserved catalytic motifs, and other elements that confer tight DNA binding. I-CreII, which catalyzes homing of the Cr.psbA4 intron, is unusual in containing two potential catalytic motifs, H-N-H and GIY-YIG. Previously, we showed that cleavage by I-CreII leaves ends (2-nt 3′ overhangs) that are characteristic of GIY-YIG endonucleases, yet it has a relaxed metal requirement like H-N-H enzymes. Here we show that I-CreII can bind DNA without an added metal ion, and that it binds as a monomer, akin to GIY-YIG enzymes. Moreover, cleavage of supercoiled DNA, and estimates of strand-specific cleavage rates, suggest that I-CreII uses a sequential cleavage mechanism. Alanine substitution of a number of residues in the GIY-YIG motif, however, did not block cleavage activity, although DNA binding was substantially reduced in several variants. Substitution of conserved histidines in the H-N-H motif resulted in variants that did not promote DNA cleavage, but retained high-affinity DNA binding—thus identifying it as the catalytic motif. Unlike the non-specific H-N-H colicins, however; substitution of the conserved asparagine substantially reduced DNA binding (though not the ability to promote cleavage). These results indicate that, in I-CreII, two catalytic motifs have evolved to play important roles in specific DNA binding. The data also indicate that only the H-N-H motif has retained catalytic ability.  相似文献   
338.
In the present investigation, we determined the chemotherapeutic efficacy of 9‐bromonoscapine (Br‐Nos), a more potent noscapine analog, on MCF10A, spontaneously immortalized human normal breast epithelial cells and MCF10A‐CSC3, cigarette smoke condensate (CSC)‐transformed cells. The results from cytogenetic analysis showed that Br‐Nos induced polyploidy and telomeric association in MCF10A‐CSC3 cells, while MCF10A cells remained unaffected. Our immunofluorescence data further demonstrated that MCF10A‐CSC3 cells were susceptible to mitotic catastrophe on exposure to Br‐Nos and failed to recover after drug withdrawal. MCF10A‐CSC3 cells exhibited Br‐Nos‐induced aberrant multipolar spindle formation, which irreversibly impaired the alignment of replicated chromosome to the equatorial plane and finally culminated in cell death. Although MCF10A cells upon Br‐Nos treatment showed bipolar spindles with some uncongressed chromosomes, these cells recovered fairly well after drug withdrawal. Our flow‐cytometry analysis data reconfirmed that MCF10A‐CSC3 cells were more susceptible to cell death compared to MCF10A cells. Furthermore, our results suggest that decreased levels of cdc2/cyclin B1 and cdc2 kinase activity are responsible for Br‐Nos‐induced mitotic cell arrest leading to cell death in MCF10A‐CSC3 cells. This study thus explores the underlying mechanism of Br‐Nos‐induced mitotic catastrophe in CSC‐transformed MCF10A‐CSC3 cells and its potential usefulness as a chemotherapeutic agent for prevention of cigarette smoke‐induced breast cancer growth. J. Cell. Biochem. 106: 1146–1156, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
339.
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号