首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2038篇
  免费   169篇
  国内免费   4篇
  2023年   15篇
  2022年   19篇
  2021年   48篇
  2020年   12篇
  2019年   34篇
  2018年   44篇
  2017年   35篇
  2016年   41篇
  2015年   78篇
  2014年   98篇
  2013年   126篇
  2012年   132篇
  2011年   132篇
  2010年   92篇
  2009年   79篇
  2008年   115篇
  2007年   109篇
  2006年   105篇
  2005年   72篇
  2004年   77篇
  2003年   64篇
  2002年   53篇
  2001年   36篇
  2000年   47篇
  1999年   40篇
  1998年   25篇
  1997年   22篇
  1996年   19篇
  1995年   19篇
  1994年   25篇
  1993年   15篇
  1992年   37篇
  1991年   25篇
  1990年   22篇
  1989年   23篇
  1988年   20篇
  1985年   23篇
  1984年   11篇
  1983年   13篇
  1982年   13篇
  1979年   12篇
  1977年   12篇
  1976年   13篇
  1975年   13篇
  1974年   14篇
  1973年   9篇
  1972年   16篇
  1971年   12篇
  1967年   11篇
  1966年   14篇
排序方式: 共有2211条查询结果,搜索用时 328 毫秒
31.
The various aspects of chemical crosslinking are addressed. Crosslinker reactivity, specificity, spacer arm length and solubility characteristics are detailed. Considerations for choosing one of these crosslinkers for a particular application are given as well as reaction conditions and practical tips for use of each category of crosslinkers.Abbreviations ABH azidobenzoyl hydrazide - ANB- NOS N-5-azido-2-nitrobenzoyloxysuccinimide - ASIB 1-(p-azidosalicylamido)-4-(iodoacetamido)butane - ASBA 4-(p-azidosalicylamido)butylamine - APDP N-[4-(p-azidosalicylamido) butyl]-3(2-pyridyldithio)propionamide - APG p-azidophenyl glyoxal monohydrate - BASED bis-[-(4-azidosalicylamido)ethyl] disulfide - BMH bismaleimidohexane - BS3 bis(sulfosuccinimidyl) suberate - BSOCOES bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone - DCC N,N-dicyclohexylcarbodiimide - DFDNB 1,5-difluoro-2,4-dinitrobenzene - DMA dimethyl adipimidate·2HCl - DMP dimethyl pimelimidate·2HCl - DMS dimethyl suberimidate·2HCl - DPDPB 1,4-di-(3,2-pyridyldithio)propionamido butane - DMF dimethylformamide - DMSO dimethylsulfoxide - DSG disuccinimidyl glutarate - DSP dithiobis(succinimidylpropionate) - DSS disuccinimidyl suberate - DST disuccinimidyl tartarate - DTSSP 3,3-dithiobis (sulfosuccinimidylpropionate) - DTBP dimethyl 3,3-dithiobispropionimidate·2HCl - EDC or EDAC 1-ethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride - EDTA ethylenediaminetetraacetic acid disodium salt, dihydrate - EGS ethylene glycolbis(succinimidylsuccinate) - GMBS N--maleimidobutyryloxysuccinimide ester - HSAB N-hydroxysuccinimidyl-4-azidobenzoate - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - MBS m-maleimidobenzoyl-N-hydroxysuccinimide ester - MES 4-morpholineethanesulfonic acid - NHS N-hydroxysuccinimide - NHS-ASA N-hydroxysuccinimidyl-4-azidosalicylic acid - PMFS phenylmethylsulfonyl fluoride - PNP-DTP p-nitrophenyl-2-diazo-3,3,3-trifluoropropionate - SAED sulfosuccinimidyl 2-(7-azido-4-methylcoumarin-3-acetamide) ethyl-1,3-dithiopropionate - SADP N-succinimdyl (4-azidophenyl)1,3-dithiopropionate - SAND sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3-dithiopropionate - SANPAH N-succinimidyl-6(4-azido-2-nitrophenyl-amino)hexanoate - SASD sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3-dithiopropionate - SATA N-succinimidyl-S-acetylthioacetate - SDBP N-hydroxysuccinimidyl-2,3-dibromopropionate - SIAB N-succinimidyl(4-iodoacetyl)aminobenzoate - SMCC succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate - SMPB succinimidyl 4-(p-maleimidophenyl) butyrate - SMPT 4-succinimidyloxycarbonyl--methyl--(2-pyridyldithio)-toluene - sulfo-BSOCOES bis[2-sulfosuccinimidooxycarbonyloxy) ethyl]sulfone - sulfo-DST disulfosuccinimidyl tartarate - sulfo-EGS ethylene glycolbis(sulfosuccinimidylsuccinate) - sulfo-GMBS N--maleimidobutyryloxysulfosuccinimide ester - sulfo-MBS m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester - sulfo-SADP sulfosuccinimidyl(4-azidophenyldithio)propionate - sulfo-SAMCA sulfosuccinimidyl 7-azido-4-methylcoumarin-3-acetate - sulfo-SANPAH sulfosuccinimidyl 6-(4-azido-2-nitrophenylamino)hexanoate - sulfo-SIAB sulfosuccinimidyl(4-iodoacetyl)aminobenzoate - sulfo-SMPB sulfo-succinimidyl 4-(p-maleimidophenyl)butyrate - sulfo-SMCC sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate - SPDP N-succinimidyl 3-(2-pyridyldithio)propionate  相似文献   
32.
Cobalamin availability can influence primary productivity and ecological interactions in marine microbial communities. The characterization of cobalamin sources and sinks is a first step in investigating cobalamin dynamics and its impact on productivity. Here, we identify potential cobalamin sources and sinks on the Scotian Shelf and Slope in the Northwest Atlantic Ocean. Functional and taxonomic annotation of bulk metagenomic reads, combined with analysis of genome bins, were used to identify potential cobalamin sources and sinks. Cobalamin synthesis potential was mainly attributed to Rhodobacteraceae, Thaumarchaeota, and cyanobacteria (Synechococcus and Prochlorococcus). Cobalamin remodelling potential was mainly attributed to Alteromonadales, Pseudomonadales, Rhizobiales, Oceanospirilalles, Rhodobacteraceae, and Verrucomicrobia, while potential cobalamin consumers include Flavobacteriaceae, Actinobacteria, Porticoccaceae, Methylophiliaceae, and Thermoplasmatota. These complementary approaches identified taxa with the potential to be involved in cobalamin cycling on the Scotian Shelf and revealed genomic information required for further characterization. The Cob operon of Rhodobacterales bacterium HTCC2255, a strain with known importance in cobalamin cycling, was similar to a major cobalamin producer bin, suggesting that a related strain may represent a critical cobalamin source in this region. These results enable future inquiries that will enhance our understanding of how cobalamin shapes microbial interdependencies and productivity in this region.  相似文献   
33.
34.
Projection of land use and land-cover change is highly uncertain yet drives critical estimates of carbon emissions, climate change, and food and bioenergy production. We use new, spatially explicit land availability data in conjunction with a model sensitivity analysis to estimate the effects of additional land protection on land use and land cover. The land availability data include protected land and agricultural suitability and is incorporated into the Moirai land data system for initializing the Global Change Analysis Model. Overall, decreasing land availability is relatively inefficient at preserving undeveloped land while having considerable regional land-use impacts. Current amounts of protected area have little effect on land and crop production estimates, but including the spatial distribution of unsuitable (i.e., unavailable) land dramatically shifts bioenergy production from high northern latitudes to the rest of the world, compared with uniform availability. This highlights the importance of spatial heterogeneity in understanding and managing land change. Approximately doubling the current protected area to emulate a 30% protected area target may avoid land conversion by 2050 of less than half the newly protected extent while reducing bioenergy feedstock land by 10.4% and cropland and grazed pasture by over 3%. Regional bioenergy land may be reduced (increased) by up to 46% (36%), cropland reduced by up to 61%, pasture reduced by up to 100%, and harvested forest reduced by up to 35%. Only a few regions show notable gains in some undeveloped land types of up to 36%. Half of the regions can reach the target using only unsuitable land, which would minimize impacts on agriculture but may not meet conservation goals. Rather than focusing on an area target, a more robust approach may be to carefully select newly protected land to meet well-defined conservation goals while minimizing impacts to agriculture.  相似文献   
35.
Rhesus progenitor-enriched BM was exposed overnight to SIV and cultured in a limiting dilution assay where the potential for progenitor interaction with lymphocytes or macrophages was low. Virus was consistently isolated late in culture, detection being aided by coculture with CEM174 lymphoblasts. Although infected cells had reduced clonogenic activity, colonies were indistinguishable from those derived from uninfected BM with respect to proliferative potential, morphology, and longevity in culture. Primate immunodeficiency viruses, therefore, may infect immature BM populations, directly affecting hematopoietic activity.  相似文献   
36.
The genomes of two positive-strand RNA viruses have recently been cloned from the serum of a GB agent-infected tamarin by using representational difference analysis. The two agent, GB viruses A and B (GBV-A and GBV-B, respectively), have genomes of 9,493 and 9,143 nucleotides, respectively, and single large open reading frames that encode potential polyprotein precursors of 2,972 and 2,864 amino acids, respectively. The genomes of these agents are organized much like those of other pestiviruses and flaviviruses, with genes predicted to encode structural and nonstructural proteins located at the 5' and 3' ends, respectively. Amino acid sequence alignments and subsequent phylogenetic analysis of the RNA-dependent RNA polymerases (RdRps) of GBV-A and GBV-B show that they possess conserved sequence motifs associated with supergroup II RNA polymerases of positive-strand RNA viruses. On the basis of similar analyses, the GBV-A- and GBV-B-encoded helicases show significant identity with the supergroup II helicases of positive-strand RNA viruses. Within the supergroup II RNA polymerases and helicases, GBV-A and GBV-B are most closely related to the hepatitis C virus group. Across their entire open reading frames, the GB agents exhibit 27% amino sequence identity to each other, approximately 28% identity to hepatitis C virus type 1, and approximately 20% identity to either bovine viral diarrhea virus or yellow fever virus. The degree of sequence divergence between GBV-A and GBV-B and other Flaviviridae members demonstrates that the GB agents are representatives of two new genera within the Flaviviridae family.  相似文献   
37.
38.
Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2.   总被引:12,自引:5,他引:7       下载免费PDF全文
The cyclin-dependent protein kinases (CDKs) are activated by association with cyclins and by phosphorylation at a conserved threonine residue by the CDK-activating kinase (CAK). We have studied the binding of various human CDK and cyclin subunits in vitro, using purified proteins derived from baculovirus-infected insect cells. We find that most CDK-cyclin complexes known to exist in human cells (CDC2-cyclin B, CDK2-cyclin A, and CDK2-cyclin E) form with high affinity in the absence of phosphorylation or other cellular components. One complex (CDC2-cyclin A) forms with high affinity only after CAK-mediated phosphorylation of CDC2 at the activating threonine residue. CDC2 does not bind with high affinity to cyclin E in vitro, even after phosphorylation of the CDC2 subunit. Thus, phosphorylation is of varying importance in the formation of high-affinity CDK-cyclin complexes.  相似文献   
39.
Lectin-receptors on leukocyte and endothelial surfaces are becoming more important in the light of increasing evidence which implicates lectin-carbohydrate interactions in diverse physiological phenomena. This study reports the identification of a major 118 kDa granulocyte surface protein, (Protein 1a) which binds the lectin wheat germ agglutinin (WGA), and is distinctly different from reported WGA binding granulocyte membrane proteins. Protein 1a has been isolated from the Triton-soluble and Triton-insoluble lysates of normal individuals and patients with Chronic Myeloid Leukemia (CML) using a combination of differential solubilization, lectin affinity, ion exchange chromatography and HPLC. The protein from the detergent lysates of both normal and CML granulocytes has similar pI values, lectin affinities, and hydrophobicity. However, its solubility in Triton is different in the two cell types. In 71% of CML cases examined, Protein 1a exhibits decreased Triton solubility suggesting its increased association with the cytoskeleton (CSK). Stimulation of normal granulocytes with WGA leads to the translocation of the soluble form of Protein 1a to the Triton-insoluble fraction. This cytoskeletal recruitment of Protein 1a is sustained only under conditions of excess WGA and occupied receptor. The CSK disruptive agent dihydrocytochalasin B (H2CB) releases the insoluble form of the receptor into the Triton-soluble fraction. Investigation of a CSK-involving process such as ligand internalization revealed that CML granulocytes exhibit slower kinetics of internalization of fluorescent WGA molecules. Since Protein 1a is a major WGA receptor on the granulocyte surface, its decreased Triton solubility in CML granulocytes suggests that this may be one of the factors contributing to the defective receptor-mediated endocytosis of WGA by CML cells, arising as a consequence of altered membrane-CSK interaction — a nodal point in the signal transduction cascade.  相似文献   
40.
Anaerobic digestion of wastewater from a dimethyl terephthalate plant was studied in continuously stirred tank reactors with plastic net biomass support particles (BSP) at a level of 20% (v/v). The experimental results showed that the BSP system could treat the wastewater at a hydraulic retention time as low as 1.5 d, organic loading as high as 20 kg COD/m3/d and at acidic feed pH as low as 4.5 with 95% COD reduction and biogas production of about 8l/l/d, while the control system without support particles could not treat the wastewater above a 5-d hydraulic retention time, 5 kg COD/m3/d organic loading and a feed pH of 6.0. Thus, augmentation of BSP upgraded the performance of the conventional suspended growth system to an equivalent level to advanced reactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号