首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1984年   3篇
  1981年   4篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
61.
The mammalian immune system has the ability to discriminate between pathogens and innocuous microbes by detecting conserved molecular patterns. In addition to conserved microbial patterns, the mammalian immune system may recognize distinct pathogen-induced processes through a mechanism which is poorly understood. Previous studies have shown that a type III secretion system (T3SS) in Yersinia pseudotuberculosis leads to decreased survival of this bacterium in primary murine macrophages by unknown mechanisms. Here, we use colony forming unit assays and fluorescence microscopy to investigate how the T3SS triggers killing of Yersinia in macrophages. We present evidence that Yersinia outer protein E (YopE) delivered by the T3SS triggers intracellular killing response against Yersinia. YopE mimics eukaryotic GTPase activating proteins (GAPs) and inactivates Rho GTPases in host cells. Unlike wild-type YopE, catalytically dead YopER144A is impaired in restricting Yersinia intracellular survival, highlighting that the GAP activity of YopE is detected as a danger signal. Additionally, a second translocated effector, YopT, counteracts the YopE triggered killing effect by decreasing the translocation level of YopE and possibly by competing for the same pool of Rho GTPase targets. Moreover, inactivation of Rho GTPases by Clostridium difficile Toxin B mimics the effect of YopE and promotes increased killing of Yersinia in macrophages. Using a Rac inhibitor NSC23766 and a Rho inhibitor TAT-C3, we show that macrophages restrict Yersinia intracellular survival in response to Rac1 inhibition, but not Rho inhibition. In summary, our findings reveal that primary macrophages sense manipulation of Rho GTPases by Yersinia YopE and actively counteract pathogenic infection by restricting intracellular bacterial survival. Our results uncover a new mode of innate immune recognition in response to pathogenic infection.  相似文献   
62.
Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1–dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3–BLOC-1 super-complex.  相似文献   
63.
The Saccharomyces cerevisiae high-affinity copper transporter, Ctr1p, mediates cellular uptake of Cu(I). We report that when copper (50 microm CuSO(4)) is added to the growth medium of copper-starved cells, Ctr1p is rapidly internalized by endocytosis, delivered to the lumen of the lysosome-like vacuole and slowly degraded by vacuolar proteases. Through analysis of the trafficking and degradation of Ctr1p mutants, two lysine residues in the C-terminal cytoplasmic tail of Ctr1p, Lys340 and Lys345, were found to be critical for copper-dependent endocytosis and degradation. In response to copper addition, Ctr1p was found to be ubiquitylated and a mutation in the Rsp5 ubiquitin ligase largely abolished ubiquitylation, endocytosis and degradation. In a strain lacking the Rsp5p accessory factors Bul1p and Bul2p, endocytosis and degradation of Ctr1p-green fluorescent protein were substantially diminished. Surprisingly, a Ctr1p mutant that lacks Lys340 and Lys345 was still ubiquitylated in a copper-dependent manner, indicating that ubiquitylation of Ctr1p on other sites is insufficient to drive copper-dependent endocytosis and degradation. This study demonstrates that copper regulates turnover of Ctr1p by stimulating Rsp5p-dependent endocytosis and degradation of Ctr1p in the vacuole.  相似文献   
64.
Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC.  相似文献   
65.
Sequences associated with human iris pigmentation   总被引:7,自引:0,他引:7  
To determine whether and how common polymorphisms are associated with natural distributions of iris colors, we surveyed 851 individuals of mainly European descent at 335 SNP loci in 13 pigmentation genes and 419 other SNPs distributed throughout the genome and known or thought to be informative for certain elements of population structure. We identified numerous SNPs, haplotypes, and diplotypes (diploid pairs of haplotypes) within the OCA2, MYO5A, TYRP1, AIM, DCT, and TYR genes and the CYP1A2-15q22-ter, CYP1B1-2p21, CYP2C8-10q23, CYP2C9-10q24, and MAOA-Xp11.4 regions as significantly associated with iris colors. Half of the associated SNPs were located on chromosome 15, which corresponds with results that others have previously obtained from linkage analysis. We identified 5 additional genes (ASIP, MC1R, POMC, and SILV) and one additional region (GSTT2-22q11.23) with haplotype and/or diplotypes, but not individual SNP alleles associated with iris colors. For most of the genes, multilocus gene-wise genotype sequences were more strongly associated with iris colors than were haplotypes or SNP alleles. Diplotypes for these genes explain 15% of iris color variation. Apart from representing the first comprehensive candidate gene study for variable iris pigmentation and constituting a first step toward developing a classification model for the inference of iris color from DNA, our results suggest that cryptic population structure might serve as a leverage tool for complex trait gene mapping if genomes are screened with the appropriate ancestry informative markers.  相似文献   
66.
BACKGROUND: Recent studies suggest that gene therapy using replication-deficient adenoviruses will benefit treatment of cardiovascular diseases including heart failure. A persistent hurdle is the effective and reproducible delivery of a transgene to the myocardium with minimal iatrogenic morbidity. In this study, we sought to design a relatively non-invasive percutaneous gene delivery system that would maximize cardiac transgene expression and minimize mortality after intracoronary adenovirus injection. METHODS: Adult rabbits received a left circumflex coronary artery (LCx) infusion of 5x10(11) total viral particles of an adenovirus containing the marker transgene beta-galactosidase (Adeno-betaGal) via either a continuous infusion method utilizing an oxygenated, normothermic, physiologic pH Krebs solution driven by a Langendorff apparatus (n=12) or a timed bolus and set concentration at a constant infusion rate to the LCx (n=12). Six rabbits underwent global transgene delivery via an invasive method involving intraventricular delivery and aortic root cross-clamping. The efficacy of transgene expression via these three distinct delivery methods was determined in the left ventricle at 5 days by histological staining and colorimetric quantification assay. RESULTS: While the open-chest, aortic cross-clamping method provides the highest level of gene expression throughout the heart, the morbidity of this procedure is clinically prohibitive. Percutaneous LCx delivery of Adeno-betaGal using the Langendorff apparatus was associated with the lowest morbidity and mortality while still supporting significant myocardial gene expression. CONCLUSIONS: Percutaneous delivery of an adenovirus solution using a continuous infusion of oxygenated Krebs solution via a Langendorff apparatus appears to be a gene delivery modality offering the best compromise of gene expression and clinical utility to maximize any potential therapeutic outcome.  相似文献   
67.
The development of an appropriate dosage form for pediatric patients needs to take into account several aspects, since adult drug biodistribution differs from that of pediatrics. In recent years, buccal administration has become an attractive route, having different dosage forms under development including tablets, lozenges, films, and solutions among others. Furthermore, the buccal epithelium can allow quick access to systemic circulation, which could be used for a rapid onset of action. For pediatric patients, dosage forms to be placed in the oral cavity have higher requirements for palatability to increase acceptance and therapy compliance. Therefore, an understanding of the excipients required and their functions and properties needs to be particularly addressed. This review is focused on the differences and requirements relevant to buccal administration for pediatric patients (compared to adults) and how novel dosage forms can be less invasive and more acceptable alternatives.  相似文献   
68.
69.
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.  相似文献   
70.
The consequences of selective addition or deletion of polar amino acids in a 13-residue antibacterial peptide PKLLKTFLSKWIG on structure, membrane binding and biological activities have been investigated. The variants generated are (a) S and T residues replaced by K, (b) S and T residues deleted individually and together, (c) introduction of two additional K and (d) deletion of L and L with T. In the aqueous environment all the peptides were unordered. In trifluoroethanol, the spectra of peptides belonging to groups (a-c) suggest distorted helical conformation. Peptides in group (d) appear to adopt beta-sheet conformation. The peptides bind to zwitterionic and negatively charged lipid vesicles, although to different extents. With the exception of peptides in group (d), all the other peptides exhibited comparable antibacterial activity against Escherichia coli and Staphylococcus aureus. However, the changes made in the peptides in groups (a-c) resulted in reduction of hemolytic activity compared to the parent peptide. Extent of binding to lipid vesicles composed of phosphatidylcholine and cholesterol appears to correlate with hemolytic activity. It appears that polar and charged residues play a major role in modulating the biological activities of the 13-residue peptide PKLLKTFLSKWIG. The 11-residue peptide-like PKLLKFLKWIG has selective antibacterial activity. Thus, by judicious engineering it should be possible to generate short peptides with selective antibacterial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号