首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   3篇
  64篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
41.
Purvalanol and roscovitine are specific cyclin-dependent kinase (CDK) inhibitors, which have antiproliferative and apoptotic effects on various types of cancer. Although, the apoptotic accomplishment of purvalanol and roscovitine was elucidated at the molecular level, the underlying exact of drug-induced apoptosis through mitogen-activated protein kinase (MAPK) signaling still speculative. In addition, the role of CDK inhibitors in the downregulation of extracellular signal–regulated kinase 1/2 (ERK1/2)-mediated epithelial-mesenchymal transition (EMT) remains unclear. Here, we investigated the potential effect of each CDK inhibitors on cell proliferation, migration, and generation of reactive oxygen species due to the inhibition of MAPKs in metastatic DU145 and PC3 prostate cancer cells. We reported that purvalanol and roscovitine induced mitochondria membrane potential loss–dependent apoptotic cell death, which was also characterized by activation of several caspases, cleavage of poly (ADP-ribose) polymerase-1 in DU145 and PC3 cells. Cotreatment of either purvalanol or roscovitine with ERK1/2 inhibitor, U0126, synergistically suppressed cell proliferation, and induced apoptotic action. Also, ERK1/2 inhibition potentiated the effect of each CDK inhibitor on the downregulation of EMT processes via increasing the epithelial marker and decreasing mesenchymal markers through reduction of Wnt signaling regulators in DU145 cells. This study provides biological evidence about purvalanol and roscovitine have apoptotic and antimetastatic effects via MAPK signaling on prostate cancer cell by activation of GSK3β signaling and inhibition of phosphoinositide-3-kinase/AKT (PI3K/AKT) pathways involved in the EMT process.  相似文献   
42.
Epibrassinolide (EBR) is a biologically active compound of the brassinosteroids, steroid-derived plant growth regulator family. Generally, brassinosteroids are known for their cell expansion and cell division-promoting roles. Recently, EBR was shown as a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth. Androgen signaling controls cell proliferation through the interaction with the androgen receptor (AR) in the prostate gland. Initially, the development of prostate cancer is driven by androgens. However, in later stages, a progress to the androgen-independent stage is observed, resulting in metastatic prostate cancer. The androgen-responsive or -irresponsive cells are responsible for tumor heterogeneity, which is an obstacle to effective anti-cancer therapy. Polyamines are amine-derived organic compounds, known for their role in abnormal cell proliferation as well as during malignant transformation. Polyamine catabolism-targeting agents are being investigated against human cancers. Many chemotherapeutic agents including polyamine analogs have been demonstrated to induce polyamine catabolism that depletes polyamine levels and causes apoptosis in tumor models. In our study, we aimed to investigate the mechanism of apoptotic cell death induced by EBR, related with polyamine biosynthetic and catabolic pathways in LNCaP (AR+), DU145 (AR?) prostate cancer cell lines and PNT1a normal prostate epithelial cell line. Induction of apoptotic cell death was observed in prostate cancer cell lines after EBR treatment. In addition, EBR induced the decrease of intracellular polyamine levels, accompanied by a significant ornithine decarboxylase (ODC) down-regulation in each prostate cancer cell and also modulated ODC antizyme and antizyme inhibitor expression levels only in LNCaP cells. Catabolic enzymes SSAT and PAO expression levels were up-regulated in both cell lines; however, the specific SSAT and PAO siRNA treatments prevented the EBR-induced apoptosis only in LNCaP (AR+) cells. In a similar way, MDL 72,527, the specific PAO and SMO inhibitor, co-treatment with EBR during 24 h, reduced the formation of cleaved fragments of PARP in LNCaP (AR+) cells.  相似文献   
43.
Munc18-1 plays pleiotropic roles in neurosecretion by acting as 1) a molecular chaperone of syntaxin-1, 2) a mediator of dense-core vesicle docking, and 3) a priming factor for soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion. However, how these functions are executed and whether they are correlated remains unclear. Here we analyzed the role of the domain-1 cleft of Munc18-1 by measuring the abilities of various mutants (D34N, D34N/M38V, K46E, E59K, K46E/E59K, K63E, and E66A) to bind and chaperone syntaxin-1 and to restore the docking and secretion of dense-core vesicles in Munc18-1/-2 double-knockdown cells. We identified striking correlations between the abilities of these mutants to bind and chaperone syntaxin-1 with their ability to restore vesicle docking and secretion. These results suggest that the domain-1 cleft of Munc18-1 is essential for binding to syntaxin-1 and thereby critical for its chaperoning, docking, and secretory functions. Our results demonstrate that the effect of the alleged priming mutants (E59K, D34N/M38V) on exocytosis can largely be explained by their reduced syntaxin-1-chaperoning functions. Finally, our data suggest that the intracellular expression and distribution of syntaxin-1 determines the level of dense-core vesicle docking.  相似文献   
44.
The enzyme 6-pyruvoyl tetrahydropterin synthase (PTPS) catalyses the second step in the de novo biosynthesis of tetrahydrobiopterin, the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin. The Zn and Mg-dependent reaction includes a triphosphate elimination, a stereospecific reduction of the N5-C6 double bond and the oxidation of both side-chain hydroxyl groups. The crystal structure of the inactive mutant Cys42Ala of PTPS in complex with its natural substrate dihydroneopterinetriphosphate was determined at 1.9 A resolution. Additionally, the uncomplexed enzyme was refined to 2.0 A resolution. The active site of PTPS consists of the pterin-anchoring Glu A107 neighboured by two catalytic motifs: a Zn(II) binding site and an intersubunit catalytic triad formed by Cys A42, Asp B88 and His B89. In the free enzyme the Zn(II) is in tetravalent co-ordination with three histidine ligands and a water molecule. In the complex the water is replaced by the two substrate side-chain hydroxyl groups yielding a penta-co-ordinated Zn(II) ion. The Zn(II) ion plays a crucial role in catalysis. It activates the protons of the substrate, stabilizes the intermediates and disfavours the breaking of the C1'C2' bond in the pyruvoyl side-chain. Cys A42 is activated by His B89 and Asp B88 for proton abstraction from the two different substrate side-chain atoms C1', and C2'. Replacing Ala A42 in the mutant structure by the wild-type Cys by modelling shows that the C1' and C2' substrate side-chain protons are at equal distances to Cys A42 Sgamma. The basicity of Cys A42 may be increased by a catalytic triad His B89 and Asp B88. The active site of PTPS seems to be optimised to carry out proton abstractions from two different side-chain C1' and C2' atoms, with no obvious preference for one of them. Kinetic studies with dihydroneopterin monophosphate reveal that the triphosphate moiety of the substrate is necessary for enzyme specifity.  相似文献   
45.
46.
GTP cyclohydrolase I catalyses the transformation of GTP into dihydroneopterin 3'-triphosphate, which is the first committed precursor of tetrahydrofolate and tetrahydrobiopterin. The kinetically competent reaction intermediate, 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone, was used as substrate for single turnover experiments monitored by multiwavelength photometry. The early reaction phase is characterized by the rapid appearance of an optical transient with an absorption maximum centred at 320. This species is likely to represent a Schiff base intermediate at the initial stage of the Amadori rearrangement of the carbohydrate side-chain. Deconvolution of the optical spectra suggested four linearly independent processes. A fifth reaction step was attributed to photodecomposition of the enzyme product. Pre-steady state experiments were also performed with the H179A mutant which can catalyse a reversible conversion of GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone but is unable to form the final product, dihydroneopterin triphosphate. Optical spectroscopy failed to detect any intermediate in the reversible reaction sequence catalysed by the mutant protein. The data obtained with the wild-type and mutant protein in conjunction with earlier quenched flow studies show that the enzyme-catalysed opening of the imidazole ring of GTP and the hydrolytic release of formate from the resulting formamide type intermediate are both rapid reactions by comparison with the subsequent rearrangement of the carbohydrate side-chain which precedes the formation of the dihydropyrazine ring of dihydroneopterin triphosphate.  相似文献   
47.
The Vo sector of the vacuolar H(+)-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1-a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca(2+)-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed.  相似文献   
48.
Quinoxalinone derivatives as prototypes of dual thrombin and factor Xa inhibitors have been discovered. Nanomolar inhibition of both coagulation enzymes resulted in very potent antithrombotic activity in vitro.  相似文献   
49.
Amidino-phenoxy quinoline derivatives represent a new class of potent thrombin inhibitors with good selectivity and remarkably low molecular weight (M(W): 335-391). X-ray analyses of thrombin-bound inhibitors revealed that enzyme inhibition is mainly based on hydrophobic interactions.  相似文献   
50.
Complete sequential 1H and 15N resonance assignments for the reduced Cu(I) form of the blue copper protein azurin (M(r) 14,000, 128 residues) from Pseudomonas aeruginosa have been obtained at pH 5.5 and 40 degrees C by using homo- and heteronuclear two-dimensional (2D) and three-dimensional (3D) nuclear magnetic resonance spectroscopic experiments. Combined analysis of a 3D homonuclear 1H Hartmann-Hahn nuclear Overhauser (3D 1H HOHAHA-NOESY) spectrum and a 3D heteronuclear 1H nuclear Overhauser 1H[15N] single-quantum coherence (3D 1H[15N] NOESY-HSQC) spectrum proved especially useful. The latter spectrum was recorded without irradiation of the water signal and provided for differential main chain amide (NH) exchange rates. NMR data were used to determine the secondary structure of azurin in solution. Comparison with the secondary structure of azurin obtained from X-ray analysis shows a virtually complete resemblance; the two beta-sheets and a 3(10)-alpha-3(10) helix are preserved at 40 degrees C, and most loops contain well-defined turns. Special findings are the unexpectedly slow exchange of the Asn-47 and Phe-114 NH's and the observation of His-46 and His-117 N epsilon 2H resonances. The implications of these observations for the assignment of azurin resonance Raman spectra, the rigidity of the blue copper site, and the electron transfer mechanism of azurin are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号