首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19662篇
  免费   2002篇
  国内免费   11篇
  21675篇
  2023年   79篇
  2022年   158篇
  2021年   338篇
  2020年   223篇
  2019年   247篇
  2018年   304篇
  2017年   329篇
  2016年   448篇
  2015年   796篇
  2014年   875篇
  2013年   973篇
  2012年   1373篇
  2011年   1317篇
  2010年   895篇
  2009年   816篇
  2008年   1112篇
  2007年   1216篇
  2006年   969篇
  2005年   1021篇
  2004年   1031篇
  2003年   971篇
  2002年   923篇
  2001年   325篇
  2000年   321篇
  1999年   287篇
  1998年   263篇
  1997年   172篇
  1996年   133篇
  1995年   129篇
  1994年   150篇
  1993年   127篇
  1992年   201篇
  1991年   198篇
  1990年   158篇
  1989年   164篇
  1988年   157篇
  1987年   158篇
  1986年   144篇
  1985年   165篇
  1984年   160篇
  1983年   120篇
  1982年   93篇
  1981年   110篇
  1980年   92篇
  1979年   95篇
  1978年   99篇
  1977年   70篇
  1976年   84篇
  1974年   90篇
  1971年   74篇
排序方式: 共有10000条查询结果,搜索用时 7 毫秒
991.
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.  相似文献   
992.
Despite substantial work, the phylogeny of malaria parasites remains debated. The matter is complicated by concerns about patterns of evolution in potentially strongly selected genes as well as the extreme AT bias of some Plasmodium genomes. Particularly contentious has been the position of the most virulent human parasite Plasmodium falciparum, whether grouped with avian parasites or within a larger clade of mammalian parasites. Here, we study 3 classes of rare genomic changes, as well as the sequences of mitochondrial ribosomal RNA (rRNA) genes. We report 3 lines of support for a clade of mammalian parasites: 1) we find no instances of spliceosomal intron loss in a hypothetical ancestor of P. falciparum and the avian parasite Plasmodium gallinaceum, suggesting against a close relationship between those species; 2) we find 4 genomic mitochondrial indels supporting a mammalian clade, but none grouping P. falciparum with avian parasites; and 3) slowly evolving mitochondrial rRNA sequences support a mammalian parasite clade with 100% posterior probability. We further report a large deletion in the mitochondrial large subunit rRNA gene, which suggests a subclade including both African and Asian parasites within the clade of closely related primate malarias. This contrasts with previous studies that provided strong support for separate Asian and African clades, and reduces certainty about the historical and geographic origins of Plasmodium vivax. Finally, we find a lack of synapomorphic gene losses, suggesting a low rate of ancestral gene loss in Plasmodium.  相似文献   
993.
We tested the hypothesis that sex-biased natal dispersal reduces close inbreeding in American black bears, a solitary species that exhibits nearly complete male dispersal and female philopatry. Using microsatellite DNA and spatial data from reproductively mature bears (>or= 4 years old), we examined the spatial genetic structure of two distinct populations in New Mexico from 1993 to 2000. As predicted, relatedness (r) and the frequency of close relationships (parent-offspring or full siblings) decreased with distance among female dyads, but little change was observed among male or opposite-sex dyads. Neighbouring females were more closely related than neighbouring males. The potential for inbreeding was low. Most opposite-sex pairs that lived sufficiently close to facilitate mating were unrelated, and few were close relatives. We found no evidence that bears actively avoided inbreeding in their selection of mates from this nearby pool, as mean r and relationship frequencies did not differ between potential and actual mating pairs (determined by parentage analysis). These basic patterns were apparent in both study areas despite a nearly two-fold difference in density. However, the sex bias in dispersal was less pronounced in the lower-density area, based on proportions of bears with male and female relatives residing nearby. This result suggests that male bears may respond to reduced competition by decreasing their rate or distance of dispersal. Evidence supports the hypothesis that inbreeding avoidance is achieved by means of male-biased dispersal but also indicates that competition (for mates or resources) modifies dispersal patterns.  相似文献   
994.
The Aspergillus nidulans putative mitogen-activated protein kinase encoded by mpkB has a role in natural product biosynthesis. An mpkB mutant exhibited a decrease in sterigmatocystin gene expression and low mycotoxin levels. The mutation also affected the expression of genes involved in penicillin and terrequinone A synthesis. mpkB was necessary for normal expression of laeA, which has been found to regulate secondary metabolism gene clusters.  相似文献   
995.
Human eosinophils spontaneously adhere to various substrates in the absence of exogenously added activators. In the present study a method was developed for characterizing eosinophil adhesion by measuring changes in impedance. Impedance measurements were performed in HCO3-buffered HybriCare medium maintained in a humidified 5% CO2 incubator at 37°C. Impedance increased by more than 1 kΩ within minutes after eosinophils made contact with the substrate, reaching a peak within 20 min. Blocking mobilization of intracellular [Ca2+] that precedes adhesion with BAPTA-AM (10 μM) completely inhibited the rise in impedance as well as the changes in cell shape typically observed in adherent cells. However, lowering the extracellular [Ca2+] with 2.5 mM EGTA did not inhibit the increase in impedance. Pretreatment with anti-CD18 antibody to block substrate interactions with β2-integrins, or jasplakinolide (2 μM) to block actin reorganization, abolished the increase in impedance and adherent morphology of the cells. Exposure of eosinophils to the phosphatidylinositol 3 kinase inhibitor LY294002 (5 μM) or treatment with protein kinase C zeta pseudosubstrate to competitively inhibit activity of the enzyme significantly reduced the increase in impedance and inhibited the cell spreading associated with adhesion. These results demonstrate a novel method for measuring eosinophil adhesion and showed that, following formation of a tethered attachment, a rapid increase in intracellular [Ca2+] precedes the cytoskeletal rearrangements required for cell shape changes and plasma membrane-substrate interactions associated with adhesion.  相似文献   
996.
Saccharomyces cerevisiae and some related yeasts are unusual in that two of the enzyme activities (galactose mutarotase and UDP-galactose 4-epimerase) required for the Leloir pathway of d-galactose catabolism are contained within a single protein-Gal10p. The recently solved structure of the protein shows that the two domains are separate and have similar folds to the separate enzymes from other species. The biochemical properties of Gal10p have been investigated using recombinant protein expressed in, and purified from, Escherichia coli. Protein-protein crosslinking confirmed that Gal10p is a dimer in solution and this state is unaffected by the presence of substrates. The steady-state kinetic parameters of the epimerase reaction are similar to those of the human enzyme, and are not affected by simultaneous activity at the mutarotase active site. The mutarotase active site has a strong preference for galactose over glucose, and is not affected by simultaneous epimerase activity. This absence of reciprocal kinetic effects between the active sites suggests that they act independently and do not influence or regulate each other.  相似文献   
997.
Eastern equine encephalitis virus (EEEV) causes sporadic but often severe cases of human and equine neurological disease in North America. To determine how EEEV may evade innate immune responses, we screened individual EEEV proteins for the ability to rescue the growth of a Newcastle disease virus expressing green fluorescent protein (NDV-GFP) from the antiviral effects of interferon (IFN). Only expression of the EEEV capsid facilitated NDV-GFP replication. Inhibition of the antiviral effects of IFN by the capsid appears to occur through a general inhibition of cellular gene expression. For example, the capsid inhibited the expression of several reporter genes under the control of RNA polymerase II promoters. In contrast, capsid did not inhibit expression from a T7 RNA polymerase promoter construct, suggesting that the inhibition of gene expression is specific and is not a simple manifestation of toxicity. The inhibition correlated both with capsid-induced phosphorylation of eukaryotic initiation factor 2 alpha and with capsid-mediated inhibition of cellular mRNA accumulation. Mapping analysis identified the N terminus as the region important for the inhibition of host gene expression, suggesting that this inhibition is independent of capsid protease activity. Finally, when cell lines containing EEEV replicons encoding capsid were selected, replicons consistently acquired mutations that deleted all or part of the capsid, for example, amino acids 18 to 135. Given that the amino terminus of the capsid is required to inhibit host cell gene expression, these data suggest that capsid expression from the replicons is ultimately toxic to host cells, presumably because of its ability to inhibit gene expression.  相似文献   
998.
The product of the Msx1 gene is a potent inhibitor of muscle differentiation. Msx1 is expressed in muscle precursor cells of the limb bud that also express Pax3. It is thought that Msx1 may facilitate distal migration by delaying myogenesis in these cells. Despite the role played by Msx1 in inhibiting muscle differentiation, nothing is known of the mechanisms that support the expression of the Msx1 gene within limb bud muscle precursor cells. In the present study we have used a combination of comparative genomics, mouse transgenic analysis, in situ hybridisation and immunohistochemistry to identify a highly conserved and tissue-specific regulatory sub-domain within the previously characterised Msx1 gene proximal enhancer element that supports the expression of the Msx1 gene in Pax3-expressing mouse limb pre-muscle masses. Furthermore, using a combination of in situ hybridisation, in vivo ChIP assay and transgenic explant culture analysis we provide evidence that Msx1 expression in limb bud muscle precursor cells is dependent on the canonical Wnt/TCF signalling pathway that is important in muscle shape formation. The results of these studies provide evidence of a mechanistic link between the Wnt/TCF and the Msx1/Pax3/MyoD pathways within limb bud muscle precursor cells.  相似文献   
999.

Background

In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2).

Results

Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells.

Conclusion

The fact that ~97% of fission yeast replication origins – both early and late – are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.  相似文献   
1000.
Wetlands are often highly effective nitrogen (N) sinks. In the Lake Waco Wetland (LWW), near Waco, Texas, USA, nitrate (NO3) concentrations are reduced by more than 90% in the first 500 m downstream of the inflow, creating a distinct gradient in NO3 concentration along the flow path of water. The relative importance of sediment denitrification (DNF), dissimilatory NO3 reduction to ammonium (DNRA), and N2 fixation were examined along the NO3 concentration gradient in the LWW. “Potential DNF” (hereafter potDNF) was observed in all months and ranged from 54 to 278 μmol N m−2 h−1. “Potential DNRA” (hereafter potDNRA) was observed only in summer months and ranged from 1.3 to 33 μmol N m−2 h−1. Net N2 flux ranged from 184 (net denitrification) to −270 (net N2 fixation) μmol N m−2 h−1. Nitrogen fixation was variable, ranging from 0 to 426 μmol N m−2 h−1, but high rates ranked among the highest reported for aquatic sediments. On average, summer potDNRA comprised only 5% (±2% SE) of total NO3 loss through dissimilatory pathways, but was as high as 36% at one site where potDNF was consistently low. Potential DNRA was higher in sediments with higher sediment oxygen demand (r 2 = 0.84), and was related to NO3 concentration in overlying water in one summer (r 2 = 0.81). Sediments were a NO3 sink and accounted for 50% of wetland NO3 removal (r 2 = 0.90). Sediments were an NH4+ source, but the wetland was often a net NH4+ sink. Although DNRA rates in freshwater wetlands may rival those observed in estuarine systems, the importance of DNRA in freshwater sediments appears to be minor relative to DNF. Furthermore, sediment N2 fixation can be extremely high when NO3 in overlying water is consistently low. The data suggest that newly fixed N can support sustained N transformation processes such as DNF and DNRA when surface water inorganic N supply rates are low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号