首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1042篇
  免费   47篇
  2023年   4篇
  2022年   7篇
  2021年   16篇
  2020年   2篇
  2019年   10篇
  2018年   13篇
  2017年   12篇
  2016年   24篇
  2015年   32篇
  2014年   47篇
  2013年   65篇
  2012年   69篇
  2011年   71篇
  2010年   52篇
  2009年   45篇
  2008年   71篇
  2007年   78篇
  2006年   89篇
  2005年   57篇
  2004年   70篇
  2003年   48篇
  2002年   53篇
  2001年   8篇
  2000年   7篇
  1999年   11篇
  1998年   16篇
  1997年   11篇
  1996年   9篇
  1995年   17篇
  1994年   3篇
  1993年   12篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1969年   2篇
排序方式: 共有1089条查询结果,搜索用时 15 毫秒
111.
Calcium plays a fundamental role as second messenger in intracellular signaling and bone serves as the body's calcium reserve to tightly maintain blood calcium levels. Calcium in ingested meal is the main supply and inadequate calcium intake causes osteoporosis and bone fracture. Here, we describe a novel mechanism of how ingested calcium is deposited on bone. Meal ingestion elicits secretion of the gut hormone gastric inhibitory polypeptide (GIP) from endocrine K cells in the duodenum. Bone histomorphometrical analyses revealed that bone formation parameters in the mice lacking GIP receptor (GIPR(-/-)) were significantly lower than those of wild-type (GIPR(+/+)) mice, and that the number of osteoclasts, especially multinuclear osteoclasts, was significantly increased in GIPR(-/-) mice, indicating that GIPR(-/-) mice have high-turnover osteoporosis. In vitro examination showed the percentage of osteoblastic cells undergoing apoptosis to be significantly decreased in the presence of GIP. Because GIPR(-/-) mice exhibited an increased plasma calcium concentration after meal ingestion, GIP directly links calcium contained in meal to calcium deposition on bone.  相似文献   
112.
The apple snail Pomacea canaliculata is an invasive species and a serious pest of rice in many Asian countries. We studied predatory activities of various animals living in Japanese freshwater habitats, by keeping each individual of a potential predator species with 36 snails of various sizes for three days in the aquarium. Forty-six species were tested, and 26 in eight classes fed on small snails. A species of leech, crabs, the common carp, turtles, the mallard duck and the Norway rat attacked even adult snails of 20–30 mm in shell height. These findings will be helpful in identifying effective predators for biological control of the pest snail. In addition, most of the animals attacking snails are reported to be common in rivers or ponds, but few live in modernized paddy fields having little connections with natural water systems. This may be a reason why this snail maintains large populations in paddy fields but not in other freshwater habitats.  相似文献   
113.
114.
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes.  相似文献   
115.
116.
Inducible co-stimulator (ICOS) is the third member of the CD28/cytotoxic T-lymphocyte associated antigen-4 family and is involved in the proliferation and activation of T cells. A detailed functional analysis of ICOS on peripheral blood T cells from patients with systemic lupus erythematosus (SLE) has not yet been reported. In the present study we developed a fully human anti-human ICOS mAb (JTA009) with high avidity and investigated the immunopathological roles of ICOS in SLE. JTA009 exhibited higher avidity for ICOS than a previously reported mAb, namely SA12. Using JTA009, ICOS was detected in a substantial proportion of unstimulated peripheral blood T cells from both normal control individuals and patients with SLE. In CD4+CD45RO+ T cells from peripheral blood, the percentage of ICOS+ cells and mean fluorescence intensity with JTA009 were significantly higher in active SLE than in inactive SLE or in normal control individuals. JTA009 co-stimulated peripheral blood T cells in the presence of suboptimal concentrations of anti-CD3 mAb. Median values of [3H]thymidine incorporation were higher in SLE T cells with ICOS co-stimulation than in normal T cells, and the difference between inactive SLE patients and normal control individuals achieved statistical significance. ICOS co-stimulation significantly increased the production of IFN-γ, IL-4 and IL-10 in both SLE and normal T cells. IFN-γ in the culture supernatants of both active and inactive SLE T cells with ICOS co-stimulation was significantly higher than in normal control T cells. Finally, SLE T cells with ICOS co-stimulation selectively and significantly enhanced the production of IgG anti-double-stranded DNA antibodies by autologous B cells. These findings suggest that ICOS is involved in abnormal T cell activation in SLE, and that blockade of the interaction between ICOS and its receptor may have therapeutic value in the treatment of this intractable disease.  相似文献   
117.
The atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) is a quite convenient soft ionization for biomolecules, keeping analytes atmospheric conditions instead of high vacuum conditions. In this study, an AP-MALDI ion source has been coupled to a quadrupole ion trap time-of-flight (QIT-TOF) mass spectrometer, which is able to perform MSn analysis. We applied this system to the structural characterization of monosialogangliosides, GM1 (NeuAc) and GM2 (NeuAc), disialogangliosides, GD2 (NeuAc, NeuAc), GD1a (NeuAc, NeuAc) and GD1b (NeuAc, NeuAc) and trisialoganglioside GT1a (NeuAc, NeuAc, NeuAc). In this system, the negative ion mass spectra of MS, MS2 and MS3, a set of three mass spectra, were able to measure within 2 s per cycle. Thus, obtained results demonstrate that the negative ion mode MS, MS2 and MS3 spectra provided sufficient information for the determination of molecular weights, oligosaccharide sequences and ceramide structures, and indicate that the AP-MALDI-QIT-TOF mass spectrometry keeping analytes atmospheric conditions with MSn switching is quite useful and convenient for structural analyses of various types of sialic acid-containing GSLs, gangliosides.  相似文献   
118.
In the mitotic exit network of budding yeast, Dbf2 kinase phosphorylates and regulates Cdc14 phosphatase. In contrast, no phosphatase substrates of LATS1/WARTS kinase, the mammalian equivalent of Dbf2, has been reported. To address this discrepancy, we performed phosphoproteomic screening using LATS1 kinase. Screening identified MYPT1 (myosin phosphatase-targeting subunit 1) as a new substrate for LATS1. LATS1 directly and preferentially phosphorylated serine 445 (S445) of MYPT1. An MYPT1 mutant (S445A) failed to dephosphorylate Thr 210 of PLK1 (pololike kinase 1), thereby activating PLK1. This suggests that LATS1 promotes MYPT1 to antagonize PLK1 activity. Consistent with this, LATS1-depleted HeLa cells or fibroblasts from LATS1 knockout mice showed increased PLK1 activity. We also found deoxyribonucleic acid (DNA) damage-induced LATS1 activation caused PLK1 suppression via the phosphorylation of MYPT1 S445. Furthermore, LATS1 knockdown cells showed reduced G2 checkpoint arrest after DNA damage. These results indicate that LATS1 phosphorylates a phosphatase as does the yeast Dbf2 and demonstrate a novel role of LATS1 in controlling PLK1 at the G2 DNA damage checkpoint.  相似文献   
119.
Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor virus, encodes two homologous membrane-associated E3 ubiquitin ligases, modulator of immune recognition 1 (MIR1) and MIR2, to evade host immunity. Both MIR1 and MIR2 downregulate the surface expression of major histocompatibility complex class I (MHC I) molecules through ubiquitin-mediated endocytosis followed by lysosomal degradation. Since MIR2 additionally downregulates a costimulatory molecule (B7-2) and an integrin ligand (intercellular adhesion molecule 1 [ICAM-1]), MIR2 is thought to be a more important molecule for immune evasion than MIR1; however, the molecular basis of the MIR2 substrate specificity remains unclear. To address this issue, we determined which regions of B7-2 and MIR2 are required for MIR2-mediated B7-2 downregulation. Experiments with chimeras made by swapping domains between human B7-2 and CD8α, a non-MIR2 substrate, and between MIR1 and MIR2 demonstrated a significant contribution of the juxtamembrane (JM) region of B7-2 and the intertransmembrane (ITM) region of MIR2 to MIR2-mediated downregulation. Structure prediction and mutagenesis analyses indicate that Phe119 and Ser120 in the MIR2 ITM region and Asp244 in the B7-2 JM region contribute to the recognition of B7-2 by MIR2. This finding provides new insight into the molecular basis of substrate recognition by MIR family members.  相似文献   
120.
Z Fu  T Nakayama  N Sato  Y Izumi  Y Kasamaki  A Shindo  M Ohta  M Soma  N Aoi  M Sato  Y Ozawa  Y Ma 《Hereditas》2012,149(3):91-98
CYP4A11, which is a member of the cytochrome P450 family, acts mainly as an enzyme that converts arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a metabolite involved in the maintenance of cardiovascular health. Recently, it was reported that many subfamilies of CYP genes have an association with myocardial infarction (MI). The aim of the present study was to assess the association between the human CYP4A11 gene and MI, using a haplotype-based case-control study with a separate analysis of the gender groups. A total of 239 MI patients and 285 controls were genotyped for 3 single-nucleotide polymorphisms (SNPs) of the human CYP4A11 gene (rs2269231, rs1126742, rs9333025). The data obtained via haplotype-based case-control studies were assessed for 3 separate groups: total subjects, men, and women. For the total, men and women groups, the distribution of the genotypes and alleles of the 3 SNPs did not show any significant difference between the MI patients and the control subjects. For the total and the men groups, the overall distribution of the haplotypes constructed with the 3 SNPs significantly differed between the MI patients and control subjects (P < 0.001). Also, for the total and for the men, the frequency of the T-T-A haplotype constructed with the 3 SNPs was significantly lower for the MI patients than for the control subjects (both P 相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号