首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   47篇
  国内免费   1篇
  946篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   9篇
  2019年   16篇
  2018年   20篇
  2017年   16篇
  2016年   25篇
  2015年   41篇
  2014年   34篇
  2013年   41篇
  2012年   77篇
  2011年   69篇
  2010年   44篇
  2009年   32篇
  2008年   64篇
  2007年   66篇
  2006年   48篇
  2005年   55篇
  2004年   63篇
  2003年   49篇
  2002年   60篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   10篇
  1997年   11篇
  1996年   7篇
  1995年   9篇
  1994年   12篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有946条查询结果,搜索用时 0 毫秒
31.
32.
The bacterial flagellar hook is a short, curved tubular structure made of FlgE. The hook connects the basal body as a rotary motor and the filament as a helical propeller and functions as a universal joint to smoothly transmit torque produced by the motor to the filament. Salmonella FlgE consists of D0, Dc, D1 and D2 domains. Axial interactions between a triangular loop of domain D1 (D1-loop) and domain D2 are postulated to be responsible for hook supercoiling. In contrast, Bacillus FlgE lacks the D1-loop and domain D2. Here, to clarify the roles of the D1-loop and domain D2 in the mechanical function, we carried out deletion analysis of Salmonella FlgE. A deletion of the D1-loop conferred a loss-of-function phenotype whereas that of domain D2 did not. The D1-loop deletion inhibited hook polymerization. Suppressor mutations of the D1-loop deletion was located within FlgD, which acts as the hook cap to promote hook assembly. This suggests a possible interaction between the D1-loop of FlgE and FlgD. Suppressor mutant cells produced straight hooks, but retained the ability to form a flagellar bundle behind a cell body, suggesting that the loop deletion does not affect the bending flexibility of the Salmonella hook.  相似文献   
33.
Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-α, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-α production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.  相似文献   
34.
This work focused on the characteristics of ethanol regulation from Monascus sp. NP1. in glucose liquid medium, a saccharification method using algae and bioethanol production from Cladophora glomerata by the fungus. The results showed that when the fungus was grown in glucose (2, 20, 40 and 50%) medium under 110 rpm rotary culture at 30 °C, the ethanol concentration at 120 h increased from 2 to 20% glucose, where it peaked. It then decreased gradually to 40%, with production stopping at 50% glucose. This result indicated the glucose regulation of ethanol production by the fungus. Ethanol present in 20% glucose medium was identified by retention time and co-injection with a standard to demonstrate that the product was ethanol. Its yield was 285 mM [13 g L?1 or 65 mg (g of glucose substrate)?1] with a low interference of by-products. Three-millimetre-long pieces of dried algae were cut and exposed to concentrations of 1, 2, 3, 4, 5 and 6 g in 65 mL of 0.3 N hydrochloric acid or sulfuric acid before autoclaving (121 °C, 15 psi, 15 min). The amount of reducing sugar was greater than that of the control (without acid treatment) and varied with the increasing quantity of algae. The best condition was sulfuric acid and 6 g dried algae. The type of acid appeared to affect saccharification. During 12 days of fermentation in algal extraction (2 g reducing sugar per millilitre algal extraction), the mould could produce twofold more ethanol yield [34–55 mg (100 g dried weight algae)?1] than the yeast, Saccharomyces cerevisiae TISTR 5049.  相似文献   
35.
TAK1 mitogen-activated protein kinase kinase kinase (MAP3K) is activated by its specific activator, TAK1-binding protein 1 (TAB1). A constitutively active TAK1 mutant has not yet been generated due to the indispensable requirement of TAB1 for TAK1 kinase activity. In this study, we generated a novel constitutively active TAK1 by fusing its kinase domain to the minimal TAK1-activation domain of TAB1. Co-immunoprecipitation assay demonstrated that these domains interacted intra-molecularly. The TAK1-TAB1 fusion protein showed a significant MAP3K activity in vitro and activated c-Jun N-terminal kinase/p38 MAPKs and IkappaB kinase in vivo, which was followed by increased production of interleukin-6. These results indicate that the fusion protein is useful for characterizing the physiological roles of the TAK1-TAB1 complex.  相似文献   
36.
Peptidyl arginine deiminases (PADs) catalyze the post-translational deimination of arginine residues to citrulline residues. Aberrant levels of PAD activity are associated with various diseases, such as rheumatoid arthritis, Alzheimer’s disease, and multiple sclerosis, so there is a need for simple and convenient high-throughput screening systems to discover PAD inhibitors as candidate therapeutic agents. Here, we report a highly sensitive off/on-type fluorescence probe for PAD activity based on the donor-excited photoinduced electron transfer (d-PeT) mechanism, utilizing the specific cycloaddition reaction between the benzil group of the probe and the ureido group of the PAD product, citrulline, under acidic conditions. We synthesized and functionally evaluated a series of probes bearing substituents on the benzil phenyl group, and found that 4MEBz-FluME could successfully detect citrulline with higher sensitivity and broader dynamic range than our previously reported fluorescence probe, FGME. Moreover, we succeeded in establishing multiple assay systems for PAD subtypes activities, including PAD2 and PAD4, with 4MeBz-FluME thanks to its high sensitivity. We expect that our fluorescence probes will become a powerful tool for discovering PAD inhibitors of several subtypes. Thus, it should be suitable for high-throughput screening of chemical libraries for inhibitors of PADs.  相似文献   
37.
In central Japan, Harmonia yedoensis is a specialist ladybird that is confined to pine tree habitats, whereas its sibling species Harmonia axyridis is a generalist that feeds on a wide range of aphid species in nature. Interestingly, H. axyridis is not distributed in the Ryukyu Archipelago, southern Japan. We hypothesized that the ecological niche of H. yedoensis should be wider in the Ryukyu Archipelago, where its competitor species in central Japan, H. axyridis, is absent. We undertook fieldwork and a survey of published works to examine habitat utilization by H. yedoensis in the Ryukyu Archipelago. We found that H. yedoensis adults in the Ryukyu Archipelago visited several kinds of deciduous trees, including wild tamarind, Chinese hibiscus, Taiwan cherry and Malayan banyan, as well as pine trees. These observations suggest that habitat generalization has occurred in H. yedoensis in the Ryukyu Archipelago, where it does not compete with H. axyridis.  相似文献   
38.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are valuable agents; however, their use has been limited by their association with mucosal damage in the upper gastrointestinal tract. NSAIDs inhibit cyclooxygenase and consequently block the synthesis of prostaglandins, which have cytoprotective effects in gastric mucosa; these effects on prostaglandins have been thought to be major cause of NSAID-induced ulceration. However, studies indicate that additional NSAID-related mechanisms are involved in formation of gastric lesions. Here, we used a toxicoproteomic approach to understand cellular processes that are affected by NSAIDs in mouse stomach tissue during ulcer formation. We used fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS)-which consists of fluorogenic derivatization, separation and fluorescence detection by LC, and identification by LC-tandem mass spectrometry-in this proteomic analysis of pyrolic stomach from control and diclofenac (Dic)-treated mice. FD-LC-MS/MS results were highly sensitive; 10 differentially expressed proteins were identified, and all 10 were more highly expressed in Dic-treated mice than in control mice. Specifically, expression levels of 78 kDa glucose-regulated protein (GRP78), heat shock protein beta-1 (HSP27), and gastrin were more than 3-fold higher in Dic-treated mice than in control mice. This study represents a first step to ascertain the precise actors of early NSAID-induced ulceration.  相似文献   
39.
2,5-Diketo-d-gluconate (2,5DKG) is a compound that can be the intermediate for d-tartrate and also vitamin C production. Although Gluconobacter oxydans NBRC3293 produces 2,5DKG from d-glucose via d-gluconate and 2-keto-d-gluconate (2KG), with accumulation of the product in the culture medium, the efficiency of 2,5DKG production is unsatisfactory because there is a large amount of residual d-gluconate at the end of the biotransformation process. Oxidation of 2KG to 2,5DKG is catalyzed by a membrane-bound flavoprotein-cytochrome c complex: 2-keto-gluconate dehydrogenase (2KGDH). Here, we studied the kgdSLC genes encoding 2KGDH in G. oxydans NBRC3293 to improve 2,5DKG production by Gluconobacter spp. The kgdS, kgdL, and kgdC genes correspond to the small, large, and cytochrome subunits of 2KGDH, respectively. The kgdSLC genes were cloned into a broad-host-range vector carrying a DNA fragment of the putative promoter region of the membrane-bound alcohol dehydrogenase gene of G. oxydans for expression in Gluconobacter spp. According to our results, 2KGDH that was purified from the recombinant Gluconobacter cells showed characteristics nearly the same as those reported previously. We also expressed the kgdSLC genes in a mutant strain of Gluconobacter japonicus NBRC3271 (formerly Gluconobacter dioxyacetonicus IFO3271) engineered to produce 2KG efficiently from a mixture of d-glucose and d-gluconate. This mutant strain consumed almost all of the starting materials (d-glucose and d-gluconate) to produce 2,5DKG quantitatively as a seemingly unique metabolite. To our knowledge, this is the first report of a Gluconobacter strain that produces 2,5DKG efficiently and homogeneously.  相似文献   
40.
Focusing on the final step of osteoclastogenesis, we studied cell fusion from tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells into multinuclear cells. TRAP-positive mononuclear cells before generation of multinuclear cells by cell fusion were differentiated from RAW264.7 cells by treatment with receptor activator of nuclear factor kappa B ligand (RANKL), and then the cells were treated with lipopolysaccharide (LPS), followed by culturing for further 12 h. LPS-induced cell fusion even in the absence of RANKL. Similarly, tumor necrosis factor (TNF)-alpha and peptidoglycan (PGN) induced cell fusion, but M-CSF did not. The cell fusion induced by RANKL, TNF-alpha, and LPS was specifically blocked by osteoprotegerin (OPG), anti-TNF-alpha antibody, and polymyxin B, respectively. LPS- and PGN-induced cell fusion was partly inhibited by anti-TNF-alpha antibody but not by OPG. When TRAP-positive mononuclear cells fused to yield multinuclear cells, phosphorylation of Akt, Src, extracellular signal-regulated kinase (ERK), p38MAPK (p38), and c-Jun NH2-terminal kinase (JNK) was observed. The specific chemical inhibitors LY294002 (PI3K), PP2 (Src), U0126 (MAPK-ERK kinase (MEK)/ERK), and SP600125 (JNK) effectively suppressed cell fusion, although SB203580 (p38) did not. mRNA of nuclear factor of activated T-cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) during the cell fusion was quantified, however, there was no obvious difference among the TRAP-positive mononuclear cells treated with or without M-CSF, RANKL, TNF-alpha, LPS, or PGN. Collectively, RANKL, TNF-alpha, LPS, and PGN induced cell fusion of osteoclasts through their own receptors. Subsequent activation of signaling pathways involving PI3K, Src, ERK, and JNK molecules was required for the cell fusion. Although DC-STAMP is considered to be a requisite for cell fusion of osteoclasts, cell fusion-inducing factors other than DC-STAMP might be necessary for the cell fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号