首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   50篇
  国内免费   1篇
  1011篇
  2023年   3篇
  2022年   7篇
  2021年   16篇
  2020年   12篇
  2019年   17篇
  2018年   20篇
  2017年   16篇
  2016年   26篇
  2015年   43篇
  2014年   36篇
  2013年   53篇
  2012年   82篇
  2011年   71篇
  2010年   48篇
  2009年   33篇
  2008年   64篇
  2007年   69篇
  2006年   48篇
  2005年   58篇
  2004年   62篇
  2003年   50篇
  2002年   64篇
  2001年   9篇
  2000年   12篇
  1999年   5篇
  1998年   10篇
  1997年   10篇
  1996年   8篇
  1995年   8篇
  1994年   11篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
排序方式: 共有1011条查询结果,搜索用时 15 毫秒
101.
The adaptive function of trophic egg-laying is generally regarded as extended parental investment to the offspring. However, the evolutionary factors promoting trophic egg-laying are still unclear, because the amount of maternal investment per offspring should be ideally equal between smaller offspring with trophic eggs and larger offspring without any additional investment. Several authors have suggested that trophic egg-laying should evolve only when egg size is constrained, but this hypothesis has not been evaluated. We investigated the evolutionary mechanisms of trophic egg-laying by two different approaches. First, we evaluated morphological constraints on egg size in two sibling ladybird species, Harmonia axyridis, which is known to produce trophic eggs, and H. yedoensis. Second, we theoretically predicted the optimal proportion of trophic eggs to total eggs and egg size in relation to environmental heterogeneity, predictability of environmental quality, and investment efficiency of trophic egg consumption. The intra- and interspecific morphological comparisons suggest that morphological constraints on the evolutionary determination of egg size are weak at best in the two ladybird species. Moreover, we theoretically showed that small egg size and trophic egg-laying are favoured in heterogeneous environments when mothers cannot adjust egg size plastically. We also showed that even a small reduction in investment efficiency makes a trophic egg strategy unlikely, despite relatively high environmental predictability. We conclude that trophic egg provisioning may be a flexible maternal adaptation to a highly heterogeneous environment rather than a response to a morphological constraint on egg size.  相似文献   
102.
Layilin (LAYN) is thought to be involved in reorganization of cytoskeleton structures, interacting with merlin, radixin, and talin. Also, LAYN is known to be one of the receptors for hyaluronic acid (HA).  相似文献   
103.
Sphingolipids are ubiquitous compounds derived from ceramide that consist of a sphingoid long-chain base with a 2-amino group amide linked to fatty acid and are present in the membranes of many organisms. As a principal sphingolipid, Saccharomyces cerevisiae contains a free ceramide and its inositol-phosphorylated derivatives (acidic types) but not a neutral glycosylated ceramide, glucosylceramide (cerebroside), which usually appears in eukaryotic cells. When 31 strains accepted in the genera Saccharomyces, Torulaspora, Zygosaccharomyces, and Kluyveromyces were analyzed for sphingolipids, cerebrosides were found in S. kluyveri, Z. cidri, Z. fermentati, K. lactis, K. thermotolerans, and K. waltii. The cerebrosides of S. kluyveri and K. lactis included 9-methyl 4-trans, 8-trans-sphingadienine and its putative metabolic intermediates. A unique characteristic of S. kluyveri was the presence of a trihydroxy sphingoid base, which rarely occurs in fungal cerebrosides. A polymerase chain reaction with primers targeted to the glucosylceramide synthase gene of other microorganisms amplified the fragments of the expected size from S. kluyveri and K. lactis and further extended to the adjacent regions. The presumed protein of S. kluyveri had 54.4% similarity to that of K. lactis, higher than the glucosylceramide synthases from Candida albicans, Pichia pastoris, and other organisms. From these observations, the divergence of S. kluyveri from the lineage of K. lactis in their evolution is discussed.  相似文献   
104.
Clearance of apoptotic cells is necessary for tissue development, homeostasis and resolution of inflammation. The uptake of apoptotic cells is initiated by an 'eat-me' signal, such as phosphatidylserine, on the cell surface and phagocytes recognize the signal by using specific receptors. In this study, we show that the soluble form of the receptor for advanced glycation end products (RAGE) binds to phosphatidylserine as well as to the apoptotic thymocytes. RAGE-deficient (Rage(-/-)) alveolar macrophages showed impaired phagocytosis of apoptotic thymocytes and defective clearance of apoptotic neutrophils in Rage(-/-) mice. Our results indicate that RAGE functions as a phosphatidylserine receptor and assists in the clearance of apoptotic cells.  相似文献   
105.
Collapsin response mediator proteins (CRMPs) are a family of cytosolic phosphoproteins that consist of 5 members (CRMP 1–5). CRMP2 and CRMP4 regulate neurite outgrowth by binding to tubulin heterodimers, resulting in the assembly of microtubules. CRMP2 also mediates the growth cone collapse response to the repulsive guidance molecule semaphorin‐3A (Sema3A). However, the role of CRMP4 in Sema3A signaling and its function in the developing mouse brain remain unclear. We generated CRMP4?/? mice in order to study the in vivo function of CRMP4 and identified a phenotype of proximal bifurcation of apical dendrites in the CA1 pyramidal neurons of CRMP4?/? mice. We also observed increased dendritic branching in cultured CRMP4?/? hippocampal neurons as well as in cultured cortical neurons treated with CRMP4 shRNA. Sema3A induces extension and branching of the dendrites of hippocampal neurons; however, these inductions were compromised in the CRMP4?/? hippocampal neurons. These results suggest that CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus and that this is partly dependent on Sema3A signaling. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   
106.
107.
Higher-level relationships of the basal Euteleostei (=Protacanthopterygii) are so complex and controversial that at least nine different morphology-based phylogenetic hypotheses have been proposed during the last 30 years. Relationships of the Protacanthopterygii were investigated using mitochondrial genomic (mitogenomic) data from 34 purposefully chosen species (data for 12 species being newly determined during the study) that fully represented major basal euteleostean lineages and some basal teleosts plus neoteleosts as outgroups. Unweighted and weighted maximum parsimony (MP) and maximum likelihood (ML) analyses were conducted with the data set that comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding the ND6 gene and 3rd codon positions) and 22 transfer RNA (tRNA) genes (stem regions only) from the 34 species. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. Monophyly of the protacanthopterygians was confidently rejected by the mitogenomic data. Of the five major monophyletic groups that received high statistical support within the protacanthopterygians, a clade comprising members of the alepocephaloids was unexpectedly nested within the Otocephala, sister-group of the euteleosts. The remaining four major monophyletic groups, on the other hand, occupied phylogenetic positions intermediate between the otocephalans and neoteleosts, with a clade comprising esociforms + salmoniforms being more basal to the argentinoids and osmeroids. Although interrelationships of the latter two clades (argentinoids and osmeroids) with the neoteleosts remained ambiguous, the present results indicated explicitly that the protacanthopterygians as currently defined merely represent a collective, polyphyletic group of the basal euteleosts, located between the basal teleosts (elopomorphs and below) and neoteleosts (stomiiforms and above).  相似文献   
108.
The tight junction serves as a paracellular gate to seal the paracellular space of apposing cells and as a molecular fence to prevent diffusion of membrane proteins and lipids in epithelial cells. Although involvement of the actin cytoskeleton has been considered to be important in these two functions, it remains to be elucidated whether both functions are regulated in a coupled manner or differentially by actin. Treatment of highly polarized MDCK cells with mycalolide B (MB), a recently developed actin-depolymerizing reagent, induced a decrease of transepithelial resistance in a dose- and time-dependent manner with reversibility when the reagent was washed out. Changes in cytoskeletal actin, such as a reduction of cortical actin, irregularity of stress fibers, and punctated actin aggregates, were observed after MB treatment. However, the fence function, as studied by diffusion of apically labeled sphingomyelin/BSA complex, remained intact in the MB-treated MDCK cells. Localization of junctional molecules and apical marker proteins such as E-cadherin, ZO-1, and 114-kDa protein was shown to be unaffected. Furthermore, freeze-fracture study showed apparent tight junction strands. Collectively, MB treatment abolished the paracellular gate but not the fence function of MDCK cells, suggesting that cytoskeletal actin may play differential roles in the gate and fence functions of the tight junction.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号