首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   872篇
  免费   47篇
  国内免费   1篇
  920篇
  2023年   3篇
  2022年   7篇
  2021年   16篇
  2020年   9篇
  2019年   16篇
  2018年   20篇
  2017年   16篇
  2016年   25篇
  2015年   41篇
  2014年   34篇
  2013年   41篇
  2012年   77篇
  2011年   69篇
  2010年   44篇
  2009年   32篇
  2008年   64篇
  2007年   66篇
  2006年   47篇
  2005年   55篇
  2004年   62篇
  2003年   48篇
  2002年   60篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   7篇
  1994年   11篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有920条查询结果,搜索用时 15 毫秒
51.
An engineered human IgG1 antibody with longer serum half-life   总被引:1,自引:0,他引:1  
The serum half-life of IgG Abs is regulated by the neonatal Fc receptor (FcRn). By binding to FcRn in endosomes, IgG Abs are salvaged from lysosomal degradation and recycled to the circulation. Several studies have demonstrated a correlation between the binding affinity of IgG Abs to FcRn and their serum half-lives in mice, including engineered Ab fragments with longer serum half-lives. Our recent study extended this correlation to human IgG2 Ab variants in primates. In the current study, several human IgG1 mutants with increased binding affinity to human FcRn at pH 6.0 were generated that retained pH-dependent release. A pharmacokinetics study in rhesus monkeys of one of the IgG1 variants indicated that its serum half-life was approximately 2.5-fold longer than the wild-type Ab. Ag binding was unaffected by the Fc mutations, while several effector functions appeared to be minimally altered. These properties suggest that engineered Abs with longer serum half-lives may prove to be effective therapeutics in humans.  相似文献   
52.
53.
54.
We previously reported that liposomes having differential lipid components displayed differential adjuvant effects when antigen was coupled with liposomes via glutaraldehyde. In the present study, antigen-liposome conjugates prepared using liposomes having differential lipid components were added to the macrophage culture, and phagocytosis and the antigen digest of liposome-coupled antigen by macrophages were then investigated. Antigen presentation by macrophages to an antigen-specific T-cell clone was further investigated using the same conjugates. Antigen-liposome conjugates which induced higher levels of antibody production in vivo were recognized more often, and the liposome-coupled antigen was digested to a greater degree by macrophages than antigen-liposome conjugates which induced lower levels of antibody production. These results correlated closely with those regarding antigen presentation by macrophages; when antigen was coupled to liposomes showing higher adjuvant effect, macrophages cocultured with antigen-liposome conjugates activated antigen-specific T-cells at a higher degree. The concentration of OVA in the macrophage culture added as antigen-liposome conjugates was approximately 32 microg/mL. However, the extent of T-cell activation was almost equal to that when 800 microg/mL of soluble OVA was added to the culture. The results of the present study demonstrated that the adjuvant activity of liposomes observed primary in vivo correlated closely with the recognition of antigen-liposome conjugates and antigen presentation of liposome-coupled antigen by macrophages, suggesting that the adjuvant effects of liposomes are exerted at the beginning of the immune response, i.e., recognition of antigen by antigen-presenting cells.  相似文献   
55.
FK506-binding proteins are the peptidyl prolyl cis-trans isomerases that are involved in various intracellular events. We characterized a novel mouse FK506-binding protein homolog, FKBP133/KIAA0674, in the developing nervous system. FKBP133 contains a domain similar to Wiskott-Aldrich syndrome protein homology region 1 (WH1) and a domain homologous to FK506-binding protein motif. FKBP133 was predominantly expressed in cerebral cortex, hippocampus, and peripheral ganglia at embryonic day 18.5. FKBP133 protein was distributed in the axonal shafts and was partially co-localized with F-actin in the growth cones of dorsal root ganglion neurons (DRG). The number of filopodia was increased in the DRG neurons overexpressing FKBP133. In contrast, the overexpression of a mutant deleted the WH1 domain reduced the growth cone size and the number of filopodia. Furthermore, the neurons overexpressing FKBP133 became significantly resistant to Semaphorin-3A induced collapse response. These results suggest that FKBP133 modulates growth cone behavior with the WH1 domain.  相似文献   
56.
57.
Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-alpha abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.  相似文献   
58.
The plant phytohormone cytokinin plays an important role in many facets of plant growth and development by regulating cell division and differentiation. Recent studies have shed significant light into the mechanisms of cytokinin metabolism and signaling. However, little is known about how the hormone is transported in planta, although it has been proposed that the hormone is presumably transported in nucleoside-conjugated forms. Here, we report the identification and characterization of cytokinin transporters in Arabidopsis. We previously reported that a gain-of-function mutation in the PGA22/AtlPT8 gene caused overproduction of cytokinins in planta. In an effort to screen for suppressor of pga22/atipt8 (soi) mutants, we identified a mutant soi33-1. Molecular and genetic analyses indicated that S0133 encodes a putative equilibrative nucleoside transporter (ENT), previously designated as AtENT8. Members of this small gene family are presumed to be involved in the transport of nucleosides in eukaryodc cells. Under conditions of nitrogen starvation, loss-of-function mutations in SOI33/AtENT8 or in a related gene AtENT3 cause a reduced sensitivity to the nucleoside-type cytokinins isopentenyladenine riboside (iPR) and transzeatin riboside (tZR), but display a normal response to the free base-type cytokinins isopentenyladenine (iP) and trans-zeatin (tZ). Conversely, overexpression of SOI33/AtENT8 renders transgenic plants hypersensitive to iPR but not to iP. An in planta measurement experiment indicated that uptake efficiency of^3Hlabeled iPR was reduced more than 40% in soi33 and atent3 mutants. However, a mutation in AtENT1 had no substantial effect on the cytokinin response and iPR uptake efficiency. Our results suggest that SOI33/AtENT8 and AtENT3 are involved in the transport of nucleoside-type cytokinins in Arabidopsis.  相似文献   
59.
The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus–CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus–CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet–tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma.  相似文献   
60.

Background

Lecithin-cholesterol acyltransferase (LCAT) is believed to be involved in reverse cholesterol transport, which is known to play a key role in suppression of atherosclerosis. However, recent investigations have demonstrated that higher LCAT activity, measured in terms of the serum cholesterol esterification rate by an endogenous substrate method, is associated with increased formation of triglyceride (TG)-rich lipoproteins (TRLs), leading to a decrease in the low-density lipoprotein (LDL) particle size. The purpose of this hospital-based longitudinal study was to clarify the causal relationship between changes in the LCAT activity and changes in the LDL-particle size.

Methods

The subjects were a total of 335 patients, derived from our previous study cohort, with one or more risk factors for atherosclerotic cardiovascular disease (ASCVD). For this study, we measured the LDL-particle size (relative LDL migration [LDL-Rm value]) by polyacrylamide gel electrophoresis in the subjects, along with the changes in the LCAT activity, at the end of a follow-up period of at least 1 year.

Results

The results revealed that the absolute change (Δ) in the LDL-particle size increased significantly as the quartile of Δ LCAT activity increased (p =?0.01). A multi-logistic regression adjusted-analysis revealed that Δ LCAT activity in the fourth quartile as compared to that in the first quartile was independently predictive of an increased LDL-particle size (odds ratio [95% confidence interval]: 2.03 [1.02/4.04], p =?0.04). Moreover, the ? LCAT activity was also positively correlated with ? TRL-related markers (i.e., TG, remnant particle-like cholesterol [RLP-C], apolipoprotein B, apolipoprotein C-2, and apolipoprotein C-3).

Conclusions

The results lend support to the hypothesis that increased LCAT activity may be associated with increased formation of TRLs, leading to a reduction in the LDL-particle size in patients at a high risk for ASCVD. To reduce the risk of ASCVD, it may be important to focus not only on the quantitative changes in the serum LDL-cholesterol levels, but also on the LCAT activity.

Trial registration

UMIN (https://upload.umin.ac.jp/cgi-bin/ctr/ctr_reg_list.cgi) Study ID: UMIN000033228 retrospectively registered 2 July 2018.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号