首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4107篇
  免费   272篇
  国内免费   5篇
  4384篇
  2022年   25篇
  2021年   38篇
  2020年   25篇
  2019年   47篇
  2018年   66篇
  2017年   50篇
  2016年   67篇
  2015年   110篇
  2014年   136篇
  2013年   197篇
  2012年   207篇
  2011年   231篇
  2010年   128篇
  2009年   110篇
  2008年   190篇
  2007年   214篇
  2006年   195篇
  2005年   200篇
  2004年   218篇
  2003年   198篇
  2002年   196篇
  2001年   142篇
  2000年   151篇
  1999年   105篇
  1998年   54篇
  1997年   39篇
  1996年   36篇
  1995年   42篇
  1994年   42篇
  1993年   33篇
  1992年   96篇
  1991年   106篇
  1990年   89篇
  1989年   71篇
  1988年   74篇
  1987年   62篇
  1986年   51篇
  1985年   42篇
  1984年   28篇
  1983年   24篇
  1982年   29篇
  1981年   18篇
  1980年   15篇
  1979年   21篇
  1978年   14篇
  1977年   17篇
  1976年   13篇
  1973年   15篇
  1972年   15篇
  1971年   15篇
排序方式: 共有4384条查询结果,搜索用时 0 毫秒
91.
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.  相似文献   
92.
BACKGROUND: It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. METHODS: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. RESULTS: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). CONCLUSION: With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism.  相似文献   
93.
In the survey of 14 species of laboratory-cultured cyanobacteria for hemagglutinins, we newly detected the activity in two species, Oscillatoria agardhii, strain NIES-204, and Phormidium foveolarum, strain NIES-503. From the extract of O. agardhii, which showed the highest activity with trypsin-treated erythrocytes of rabbit, a lectin was purified to homogeneity by the combination of precipitation with (NH4)2SO4, gel filtration, hydrophobic chromatography and reverse phase chromatography. The purified lectin, designated OAA, was a monomeric protein with an apparent molecular weight of 13,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 16,000 on gel filtration. The amino acid composition was rich in glycine and acidic amino acids. The hemagglutination activity was inhibited by glycoproteins such as yeast mannan, but not by any of the monosaccharides tested. The activity was stable over a wide range of pH (4-11) and at a high temperature of 80 degrees C, and independent on the presence of divalent cations. The features of OAA resembled those of many of lectins from marine macroalgae. The sequence of amino-terminal residues of OAA was determined as ALYNVENQWGGSSAPWNEGG, which was highly homologous to those of lectins from macroalgae of the genus Eucheuma and that of a myxobacterium Myxococcus xanthus hemagglutinin.  相似文献   
94.
The present study examined the role of phospholipase D2 (PLD2) in the regulation of depolarization-induced neurite outgrowth and the expression of growth-associated protein-43 (GAP-43) and synapsin I in rat pheochromocytoma (PC12) cells. Depolarization of PC12 cells with 50 mmol/L KCl increased neurite outgrowth and elevated mRNA and protein expression of GAP-43 and synapsin I. These increases were suppressed by inhibition of Ca2+-calmodulin-dependent protein kinase II (CaMKII), PLD, or mitogen-activated protein kinase kinase (MEK). Knockdown of PLD2 by small interfering RNA (siRNA) suppressed the depolarization-induced neurite outgrowth, and the increase in GAP-43 and synapsin I expression. Depolarization evoked a Ca2+ rise that activated various signaling enzymes and the cAMP response element-binding protein (CREB). Silencing CaMKIIδ by siRNA blocked KCl-induced phosphorylation of proline-rich protein tyrosine kinase 2 (Pyk2), Src kinase, and extracellular signal-regulated kinase (ERK). Inhibition of Src or MEK abolished phosphorylation of ERK and CREB. Furthermore, phosphorylation of Pyk2, ERK, and CREB was suppressed by the PLD inhibitor, 1-butanol and transfection of PLD2 siRNA, whereas it was enhanced by over-expression of wild-type PLD2. Depolarization-induced PLD2 activation was suppressed by CaMKII and Src inhibitors, but not by MEK or protein kinase A inhibitors. These results suggest that the signaling pathway of depolarization-induced PLD2 activation was downstream of CaMKIIδ and Src, and upstream of Pyk2(Y881) and ERK/CREB, but independent of the protein kinase A. This is the first demonstration that PLD2 activation is involved in GAP-43 and synapsin I expression during depolarization-induced neuronal differentiation in PC12 cells.  相似文献   
95.
Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS-RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain.  相似文献   
96.
A novel process for the production of peptide mixtures is proposed. Biologically active peptides were synthesized using a thermolysin-catalyzed hydrolysis of a corn protein (zein) in an aqueous two-phase system. The mixture of peptides which was selectively recovered from the dextran-rich bottom phase had a higher angiotensin-converting enzyme (ACE) inhibitory activity than native zein.  相似文献   
97.
Interspecific hybridization is one of the major factors leading to phylogenetic incongruence among loci, but the knowledge is still limited about the potential of each locus to introgress between species. By directly sequencing three DNA regions: chloroplast DNAs (matK gene and trnL-F noncoding region), the nuclear ribosomal external transcribed spacer (ETS) region, and internal transcribed spacer (ITS) regions, we construct three phylogenetic trees of Asian species of Mitella (Saxifragaceae), a genus of perennials in which natural hybrids are commonly observed. Within this genus, there is a significant topological conflict between chloroplast and nuclear phylogenies and also between the ETS and the ITS, which can be attributed to frequent hybridization within the lineage. Chloroplast DNAs show the most extensive introgression pattern, ITS regions show a moderate pattern, and the ETS region shows no evidence of introgression. Nonuniform concerted evolution best explains the difference in the introgression patterns between the ETS region and ITS regions, as the sequence heterogeneity of the ITS region within an individual genome is estimated to be twice that of an ETS in this lineage. Significant gene conversion patterns between two hybridizing taxa were observed in contiguous arrays of cloned ETS-ITS sequences, further confirming that only ITS regions have introgressed bidirectionally. The relatively slow concerted evolution in the ITS regions probably allows the coexistence of multiple alleles within a genome, whereas the strong concerted evolution in the ETS region rapidly eliminates heterogeneous alleles derived from other species, resulting in species delimitations highly concordant with those based on morphology. This finding indicates that the use of multiple molecular tools has the potential to reveal detailed organismal evolution processes involving interspecific hybridization, as an individual locus varies greatly in its potential to introgress between species.  相似文献   
98.
99.
Of 10 mammalian secreted phospholipase A(2) (sPLA(2)) enzymes identified to date, group V and X sPLA(2)s, which are two potent plasma membrane-acting sPLA(2)s, are capable of preventing host cells from being infected with adenovirus, and this anti-viral action depends on the conversion of phosphatidylcholine (PC) to lysophosphatidylcholine (LPC) in the host cell membrane. Here, we show that human group III sPLA(2), which is structurally more similar to bee venom PLA(2) than to other mammalian sPLA(2)s, also has the capacity to inhibit adenovirus infection into host cells. Mass spectrometry (MS) demonstrated that group III sPLA(2) hydrolyzes particular molecular species of PC to generate LPC in human bronchial epithelial cells. Remarkably, in addition to the catalytically active sPLA(2) domain, the N-terminal, but not C-terminal, domain unique to this enzyme was required for the anti-adenovirus effect. To our knowledge, this is the first demonstration that the biological action of group III sPLA(2) depends on its N-terminal domain. Finally, our MS analysis provided additional and novel evidence that group III, V and X sPLA(2)s target distinct phospholipid molecular species in cellular membranes.  相似文献   
100.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号