首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2015年   2篇
  2014年   3篇
  2013年   10篇
  2012年   10篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1997年   4篇
  1992年   4篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1983年   2篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
81.
6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.  相似文献   
82.
Pituitary adenylate cyclase-activating polypeptide (PACAP) functions as a neuroprotective factor through the PACAP type 1 receptor, PAC1. In a previous work, we demonstrated that nerve growth factor augmented PAC1 gene expression through the activation of Sp1 via the Ras/MAPK pathway. We also observed that PAC1 expression in Neuro2a cells was transiently suppressed during in vitro ischemic conditions, oxygen-glucose deprivation (OGD). Because endoplasmic reticulum (ER) stress is induced by ischemia, we attempted to clarify how ER stress affects the expression of PAC1. Tunicamycin, which induces ER stress, significantly suppressed PAC1 gene expression, and salubrinal, a selective inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase signaling pathway of ER stress, blocked the suppression. In luciferase reporter assay, we found that two Sp1 sites were involved in suppression of PAC1 gene expression due to tunicamycin or OGD. Immunocytochemical staining demonstrated that OGD-induced transglutaminase 2 (TG2) expression was suppressed by salubrinal or cystamine, a TG activity inhibitor. Further, the OGD-induced accumulation of cross-linked Sp1 in nuclei was suppressed by cystamine or salubrinal. Together with cystamine, R283, TG2-specific inhibitor, and siRNA specific for TG2 also ameliorated OGD-induced attenuation of PAC1 gene expression. These results suggest that Sp1 cross-linking might be crucial in negative regulation of PAC1 gene expression due to TG2 in OGD-induced ER stress.  相似文献   
83.
Oxidation of short-chain iso-alkanes (isobutane, isopentane, 2-methylpentane, and 3-methylpentane) was studied with propane-grown resting mycelia of Scedosporium sp. A-4. Isobutane was oxidized to terf-butanol, but both isobutane and tert-butanol were not used for growth. Isopentane was oxidized to 3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-2-butanol but not to 2-methyl-1-butanol. 2-Methylpentane was oxidized to 4-methyl-1-pentanol, 2-methyl-2-pentanol, and 4-methyl-2-pentanol but not to 2-methyl-1-pentanol or 2-methyl-3-pentanol. 3-Methylpentane was not oxidized. Oxidation of branched alcohols was also studied.  相似文献   
84.
85.
In SLJ-1 we proposed to study three major objectives. They were; 1. hormonal changes associated with fluid and electrolyte metabolism, 2. the effect of space flight on the circadian rhythms of endocrine and metabolic systems, 3. the changes in the indices of the bone and muscle metabolism during space flight. In this report, the changes in the bone metabolism during Spacelab-J will be presented with a special emphasis on urinary excretion of pyridinium cross-links. Timed urine samples from three Japanese payload specialists were obtained for 3 days from May 19 to 21, 1991 (one year before the launch = L-1 year). Immediately before the launch (L-3 to L-0), urine samples were obtained from a payload specialist who was on board the Space Shuttle Endeavor (PS). During the inflight period (flight from September 3 to 10 in 1992), urine samples from the PS were collected by using Urine Monitoring System (UMS). After the landing, they were obtained from the PS for three days (R+0-R+2). Various parameters related to bone metabolism such as hydroxyproline, pyridinium cross-links and calcium were determined. It was noted that excretion of hydroxyproline decreased during the preflight periods when compared with that in the control L-1 year period. The average excretory rate during control period was 846.2 +/- 198.7 milligrams/hour (mean +/- SD), while those in the preflight 474.6 +/- 171.1 milligrams/hour, suggesting the diminished collagen intake during the preflight period. Average excretion rate of pyridinium cross-links during the first 4 mission days (MD0-MD3) was similar to that of preflight and control L-1 year period. However, it was significantly increased during the last 4 mission days (MD4-MD7). It returned to the preflight level during postflight days (R+0-R+2). Increased urinary excretion of calcium during the last 4 mission days were also observed. These results suggest that increase in bone resorption could occur during relatively short stay in microgravity.  相似文献   
86.
The effect of hypoglycemic stress on the changes in water and electrolyte metabolism induced by head-down tilting (HDT) was studied. Six healthy men were subjected to postural changes (30 min standing, 2 h HDT, 1 h standing), with or without the intravenous administration of insulin at the beginning of HDT. When insulin was not given, antidiuretic hormone (ADH), cortisol, plasma renin activity (PRA), aldosterone, and catecholamine levels were decreased and atrial natriuretic polypeptide (ANP) levels increased during HDT. These changes were associated with 2.5- and 1.5-fold increases in urine flow and sodium excretion, respectively, when compared with the amounts before HDT. On the other hand, insulin-induced hypoglycemia during HDT produced increases in ADH, cortisol, PRA, aldosterone, and catecholamine levels. At the same time, an exaggerated ANP response by HDT was observed. These hormonal changes were associated with an abolishment of the increases in urine flow and sodium excretion. It is suggested that acute stress modifies the changes in fluid and electrolyte metabolism induced by HDT.  相似文献   
87.
The essential metals copper, zinc, and iron play key roles in embryonic, fetal, and postnatal development in higher eukaryotes. Recent advances in our understanding of the molecules involved in the intricate control of the homeostasis of these metals and the availability of natural mutations and targeted mutations in many of the genes involved have allowed for elucidation of the diverse roles of these metals during development. Evidence suggests that the ability of the embryo to control the homeostasis of these metals becomes essential at the blastocyst stage and during early morphogenesis. However, these metals play unique roles throughout development and exert pleiotropic, metal-specific, and often cell-specific effects on morphogenesis, growth, and differentiation. Herein, we briefly review the major players known to be involved in the homeostasis of each of these essential metals and their known roles in development.  相似文献   
88.
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and γ-aminobutyric acid receptors type A (GABAARs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca2+ dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca2+ signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 μM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABAAR antagonism by a high dose of 200 μM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABAAR profiles of Ca2+ signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca2+ surges and NCAM-180 signaling.  相似文献   
89.
We have demonstrated that T3 increases the expression of ZAKI-4alpha, an endogenous calcineurin inhibitor. In this study we characterized a T3-dependent signaling cascade leading to ZAKI-4alpha expression in human skin fibroblasts. We found that T3-dependent increase in ZAKI-4alpha was greatly attenuated by rapamycin, a specific inhibitor of a protein kinase, mammalian target of rapamycin (mTOR), suggesting the requirement of mTOR activation by T3. Indeed, T3 activated mTOR rapidly through S2448 phosphorylation, leading to the phosphorylation of p70(S6K), a substrate of mTOR. This mTOR activation is mediated through phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) signaling cascade because T3 induced Akt/PKB phosphorylation more rapidly than that of mTOR, and these T3-dependent phosphorylations were blocked by both PI3K inhibitors and by expression of a dominant negative PI3K (Deltap85alpha). Furthermore, the association between thyroid hormone receptor beta1 (TRbeta1) and PI3K-regulatory subunit p85alpha, and the inhibition of T3-induced PI3K activation and mTOR phosphorylation by a dominant negative TR (G345R) demonstrated the involvement of TR in this T3 action. The liganded TR induces the activation of PI3K and Akt/PKB, leading to the nuclear translocation of the latter, which subsequently phosphorylates nuclear mTOR. The rapid activation of PI3K-Akt/PKB-mTOR-p70(S6K) cascade by T3 provides a new molecular mechanism for thyroid hormone action.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号